OFFSET
0,3
FORMULA
The g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} (-x)^n*A(x)^(3*n+1) * Product_{k=1..n} (1 + x^(4*k-3)*A(x)^3)/(1 + x^(4*k-1)*A(x)^3);
(2) 1 = A(x)/(1+ x*A(x)^3/(1- x*(1-x^2)*A(x)^3/(1+ x^5*A(x)^3/(1- x^3*(1-x^4)*A(x)^3/(1+ x^9*A(x)^3/(1- x^5*(1-x^6)*A(x)^3/(1+ x^13*A(x)^3/(1- x^7*(1-x^8)*A(x)^3/(1- ...))))))))) (continued fraction);
due to identities of a partial elliptic theta function.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 139*x^4 + 958*x^5 + 6979*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^4 + x^4*A(x)^7 - x^9*A(x)^10 + x^16*A(x)^13 -+...
Related expansions.
A(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 965*x^4 + 7028*x^5 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 357*x^3 + 2688*x^4 + 20811*x^5 +...
PROG
(PARI) {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(#A)+1, (-x)^(m^2)*Ser(A)^(3*m+1) ), #A-1)); if(n<0, 0, A[n+1])}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 16 2011
STATUS
approved