login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200731
G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^6).
7
1, 1, 4, 22, 139, 953, 6894, 51796, 400269, 3161262, 25403536, 207043048, 1707345547, 14219399626, 119431172630, 1010495472960, 8604568715969, 73683710894255, 634142349130800, 5482062214763436, 47582484748270453, 414503778412715065, 3622792181209018168, 31758958747482608912
OFFSET
0,3
COMMENTS
More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2, q=3.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) a(n) = [x^n] (1 + x + x^2 + x^3)^(3*n+1) / (3*n+1).
(2) A(x) = ( (1/x)*Series_Reversion( x/(1 + x + x^2 + x^3)^3 ) )^(1/3).
(3) A( x/(1 + x + x^2 + x^3)^3 ) = 1 + x + x^2 + x^3.
(4) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) = g.f. of A036765 (number of rooted trees with a degree constraint).
(5) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(3*k)] ).
(6) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * [(1-x*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(3*k) )] ).
From Peter Bala, Jun 21 2015: (Start)
a(n) = 1/(3*n + 1)*Sum_{k = 0..floor(n/2)} binomial(3*n + 1,k)*binomial(3*n + 1,n - 2*k).
More generally, the coefficient of x^n in A(x)^r equals r/(3*n + r)*Sum_{k = 0..floor(n/2)} binomial(3*n + r,k)*binomial(3*n + r,n - 2*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} 1/3*b(n)x^n/n), where b(n) = Sum_{k = 0..floor(n/2)} binomial(3*n,k)*binomial(3*n,n - 2*k). Cf. A036765, A186241, A198951. (End)
Recurrence: 128*n*(2*n - 1)*(4*n - 1)*(4*n + 1)*(8*n - 3)*(8*n - 1)*(8*n + 1)*(8*n + 3)*(511073753*n^7 - 4871850365*n^6 + 19478089219*n^5 - 42349790393*n^4 + 54094962928*n^3 - 40605677522*n^2 + 16589611340*n - 2846611200)*a(n) = 3*(3*n - 2)*(3*n - 1)*(3047149994898003*n^13 - 32094344705469618*n^12 + 145743661212727337*n^11 - 373710048777443810*n^10 + 593788894662012231*n^9 - 600683242386376410*n^8 + 377600776651518819*n^7 - 130595257353511374*n^6 + 11334217618972546*n^5 + 8004135084547148*n^4 - 2618300200112616*n^3 + 152383960257264*n^2 + 33025238671680*n - 3264156403200)*a(n-1) - 576*(n-1)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(495741540410*n^10 - 3982082543435*n^9 + 12891395244590*n^8 - 21360691645174*n^7 + 18695904340190*n^6 - 7495052530111*n^5 + 212344193250*n^4 + 656210670544*n^3 - 106487698440*n^2 - 7969373424*n + 1477828800)*a(n-2) + 110592*(n-2)*(n-1)*(3*n - 8)*(3*n - 7)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(511073753*n^7 - 1294334094*n^6 + 979535842*n^5 - 149518418*n^4 - 72732399*n^3 + 16154432*n^2 + 843684*n - 192240)*a(n-3). - Vaclav Kotesovec, Nov 17 2017
a(n) ~ s/(2*sqrt(3*Pi*(4 - 9*r*s^2*(1 + r*s^3)))*n^(3/2)*r^n), where r = 0.1068159753611743655799981945670627355827110854720... and s = 1.345561337338583233012136458010090420775336284226... are real roots of the system of equations (1 + r*s^3)*(1 + r^2*s^6) = s, 3*r*s^2*(1 + 2*r*s^3 + 3*r^2*s^6) = 1. - Vaclav Kotesovec, Nov 22 2017
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 139*x^4 + 953*x^5 + 6894*x^6 +...
where A(x) = (1 + x*A(x)^3)*(1 + x^2*A(x)^6).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 609*x^4 + 4335*x^5 + 32197*x^6 +...
A(x)^6 = 1 + 6*x + 39*x^2 + 272*x^3 + 1989*x^4 + 15054*x^5 + 116955*x^6 +...
A(x)^9 = 1 + 9*x + 72*x^2 + 570*x^3 + 4545*x^4 + 36639*x^5 + 298662*x^6 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^6 + x^3*A(x)^9.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^3)*x*A^2 + (1 + 2^2*x*A^3 + x^2*A^6)*x^2*A^4/2 +
(1 + 3^2*x*A^3 + 3^2*x^2*A^6 + x^3*A^9)*x^3*A^6/3 +
(1 + 4^2*x*A^3 + 6^2*x^2*A^6 + 4^2*x^3*A^9 + x^4*A^12)*x^4*A^8/4 +
(1 + 5^2*x*A^3 + 10^2*x^2*A^6 + 10^2*x^3*A^9 + 5^2*x^4*A^12 + x^5*A^15)*x^5*A^10/5 + ...
which involves squares of binomial coefficients.
MATHEMATICA
nmax = 23; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x A[x]^3)*(1 + x^2 A[x]^6) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
PROG
(PARI) {a(n)=polcoeff( ((1/x)*serreverse(x/(1 + x + x^2 + x^3 +x*O(x^n))^3))^(1/3), n)}
(PARI) {a(n)=polcoeff( (1 + x + x^2 + x^3 +x*O(x^n))^(3*n+1)/(3*n+1), n)}
(PARI) {a(n)=local(p=2, q=3, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
(PARI) {a(n)=local(p=2, q=3, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
(PARI) {a(n)=local(p=2, q=3, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 21 2011
STATUS
approved