login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200725 G.f. satisfies: A(x) = (1+x^2)*(1 + x*A(x)^3). 1
1, 1, 4, 16, 76, 399, 2206, 12664, 74790, 451420, 2772313, 17267652, 108821293, 692609446, 4445642625, 28744599748, 187047449289, 1224027357216, 8050074481917, 53179900898596, 352726704965748, 2348036826102013, 15682048658695168, 105052549830928908, 705678173069959645 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally, for fixed parameters p and q, if F(x) satisfies:

F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),

then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2, q=-3.

LINKS

Table of n, a(n) for n=0..24.

FORMULA

G.f. A(x) satisfies:

(1) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^(3*k)] ).

(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [(1 - x/A(x)^3)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k / A(x)^(3*k) )].

Recurrence: 2*(n-4)*(n-2)*n*(2*n+1)*a(n) = 3*(n-4)*(n-2)*(3*n-2)*(3*n-1)*a(n-1) - 2*(n-4)*(n-2)*n*(2*n-1)*a(n-2) + 6*(n-4)*(3*n-8)*(6*n^2 - 17*n + 2)*a(n-3) + 6*(3*n-14)*(9*n^3 - 66*n^2 + 114*n - 4)*a(n-5) + 6*n*(3*n-20)*(6*n^2 - 47*n + 78)*a(n-7) + 3*(n-2)*n*(3*n-26)*(3*n-19)*a(n-9). - Vaclav Kotesovec, Aug 19 2013

a(n) ~ c*d^n/n^(3/2), where d = 7.1535029565... is the root of the equation -27 - 81*d^2 - 81*d^4 - 27*d^6 + 4*d^7 = 0 and c = 0.26300783791885411389369671... - Vaclav Kotesovec, Aug 19 2013

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 76*x^4 + 399*x^5 + 2206*x^6 +...

Related expansion:

A(x)^3 = 1 + 3*x + 15*x^2 + 73*x^3 + 384*x^4 + 2133*x^5 + 12280*x^6 +...

where a(3) = 1 + 15; a(4) = 3 + 73; a(5) = 15 + 384; a(6) = 73 + 2133; ...

The logarithm of the g.f. A = A(x) equals the series:

log(A(x)) = (1 + x/A^3)*x*A^2 + (1 + 2^2*x/A^3 + x^2/A^6)*x^2*A^4/2 +

(1 + 3^2*x/A^3 + 3^2*x^2/A^6 + x^3/A^9)*x^3*A^6/3 +

(1 + 4^2*x/A^3 + 6^2*x^2/A^6 + 4^2*x^3/A^9 + x^4/A^12)*x^4*A^8/4 +

(1 + 5^2*x/A^3 + 10^2*x^2/A^6 + 10^2*x^3/A^9 + 5^2*x^4/A^12 + x^5/A^15)*x^5*A^10/5 + ...

which involves the squares of the binomial coefficients C(n,k).

MATHEMATICA

nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x^2)*(1+x*AGF^3)-AGF, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Aug 19 2013 *)

PROG

(PARI) {a(n)=local(p=2, q=-3, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}

(PARI) {a(n)=local(p=2, q=-3, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

(PARI) {a(n)=local(p=2, q=-3, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

CROSSREFS

Cf. A200716, A200717, A200718, A200719, A200074, A200075, A199874, A199876, A199877, A198951, A198953, A198957, A192415, A198888, A036765.

Sequence in context: A094559 A199214 A241023 * A255906 A260949 A049426

Adjacent sequences:  A200722 A200723 A200724 * A200726 A200727 A200728

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 05:13 EDT 2021. Contains 343965 sequences. (Running on oeis4.)