login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200724
Expansion of 1/(1-35*x+x^2).
3
1, 35, 1224, 42805, 1496951, 52350480, 1830769849, 64024594235, 2239030028376, 78302026398925, 2738331893933999, 95763314261291040, 3348977667251252401, 117118455039532542995, 4095796948716387752424, 143235774750034038791845, 5009156319302474969962151
OFFSET
0,2
COMMENTS
A Diophantine property of these numbers: (a(n+1)-a(n-1))^2 - 1221*a(n)^2 = 4. (See also comment in A200441.)
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,34}. - Milan Janjic, Jan 26 2015
FORMULA
G.f.: 1/(1-35*x+x^2).
a(n) = 35*a(n-1)-a(n-2) with a(0)=1, a(1)=35.
a(n) = -a(-n-2) = (t^(n+1)-1/t^(n+1))/(t-1/t) where t=(35+sqrt(1221))/2.
a(n) = sum((-1)^k*binomial(n-k, k)*35^(n-2k), k=0..floor(n/2)).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*34^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/33*(33 + sqrt(1221)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/70*(33 + sqrt(1221)). - Peter Bala, Dec 23 2012
MATHEMATICA
LinearRecurrence[{35, -1}, {1, 35}, 17]
PROG
(PARI) Vec(1/(1-35*x+x^2)+O(x^17))
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-1221); S:=[(((35+r)/2)^n-1/((35+r)/2)^n)/r: n in [1..17]]; [Integers()!S[j]: j in [1..#S]];
(Maxima) makelist(sum((-1)^k*binomial(n-k, k)*35^(n-2*k), k, 0, floor(n/2)), n, 0, 16);
CROSSREFS
Sequence in context: A170754 A218737 A126158 * A207492 A207889 A208112
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 21 2011
STATUS
approved