The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200724 Expansion of 1/(1-35*x+x^2). 3
 1, 35, 1224, 42805, 1496951, 52350480, 1830769849, 64024594235, 2239030028376, 78302026398925, 2738331893933999, 95763314261291040, 3348977667251252401, 117118455039532542995, 4095796948716387752424, 143235774750034038791845, 5009156319302474969962151 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A Diophantine property of these numbers: (a(n+1)-a(n-1))^2 - 1221*a(n)^2 = 4. (See also comment in A200441.) a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,34}. - Milan Janjic, Jan 26 2015 LINKS Bruno Berselli, Table of n, a(n) for n = 0..500 Tanya Khovanova, Recursive Sequences. Index entries for linear recurrences with constant coefficients, signature (35,-1). FORMULA G.f.: 1/(1-35*x+x^2). a(n) = 35*a(n-1)-a(n-2) with a(0)=1, a(1)=35. a(n) = -a(-n-2) = (t^(n+1)-1/t^(n+1))/(t-1/t) where t=(35+sqrt(1221))/2. a(n) = sum((-1)^k*binomial(n-k, k)*35^(n-2k), k=0..floor(n/2)). a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*34^k. - Philippe Deléham, Feb 10 2012 Product {n >= 0} (1 + 1/a(n)) = 1/33*(33 + sqrt(1221)). - Peter Bala, Dec 23 2012 Product {n >= 1} (1 - 1/a(n)) = 1/70*(33 + sqrt(1221)). - Peter Bala, Dec 23 2012 MATHEMATICA LinearRecurrence[{35, -1}, {1, 35}, 17] PROG (PARI) Vec(1/(1-35*x+x^2)+O(x^17)) (Magma) Z:=PolynomialRing(Integers()); N:=NumberField(x^2-1221); S:=[(((35+r)/2)^n-1/((35+r)/2)^n)/r: n in [1..17]]; [Integers()!S[j]: j in [1..#S]]; (Maxima) makelist(sum((-1)^k*binomial(n-k, k)*35^(n-2*k), k, 0, floor(n/2)), n, 0, 16); CROSSREFS Cf. A029547, A144128. Sequence in context: A170754 A218737 A126158 * A207492 A207889 A208112 Adjacent sequences: A200721 A200722 A200723 * A200725 A200726 A200727 KEYWORD nonn,easy AUTHOR Bruno Berselli, Nov 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 04:37 EST 2022. Contains 358431 sequences. (Running on oeis4.)