OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps).
(4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x*A(x)^3)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^k * A(x)^(3*k) ).
a(n) = sum(j=0..n/2, binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1)). - Vladimir Kruchinin, May 28 2014
a(n) ~ sqrt((1 + 2*r*s^3 + 3*r^2*s^4)/(2*Pi*s*(3 + 5*r*s))) / (2*n^(3/2)*r^(n+1/2)), where r = 0.187614989725738719..., s = 1.61178302212918247... are roots of the system of equations r + 4*r^2*s^3 + 5*r^3*s^4 = 1, (1+r*s)*(1+r^2*s^4) = s. - Vaclav Kotesovec, May 28 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 102*x^5 + 424*x^6 + 1827*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1028*x^5 + 4570*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 375*x^4 + 1681*x^5 + 7660*x^6 +...
where A(x) = 1 + x*A(x) + x^2*A(x)^4 + x^3*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^3)*x + (1 + 2^2*x*A(x)^3 + x^2*A(x)^6)*x^2/2 +
(1 + 3^2*x*A(x)^3 + 3^2*x^2*A(x)^6 + x^3*A(x)^9)*x^3/3 +
(1 + 4^2*x*A(x)^3 + 6^2*x^2*A(x)^6 + 4^2*x^3*A(x)^9 + x^4*A(x)^12)*x^4/4 +
(1 + 5^2*x*A(x)^3 + 10^2*x^2*A(x)^6 + 10^2*x^3*A(x)^9 + 5^2*x^4*A(x)^12 + x^5*A(x)^15)*x^5/5 +...
more explicitly,
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 75*x^4/4 + 356*x^5/5 + 1746*x^6/6 + 8660*x^7/7 + 43299*x^8/8 +...
Also, g.f. A(x) = G(x*A(x)) where G(x) = A(x/G(x)) (g.f. of A104545) begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
MATHEMATICA
CoefficientList[1/x*InverseSeries[Series[2*x^3*(1+x)/(1 - Sqrt[1-4*x^2*(1+x)^2]), {x, 0, 20}], x], x] (* Vaclav Kotesovec, May 28 2014 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*(A+x*O(x^n))^4)); polcoeff(A, n)}
(PARI) {a(n)=polcoeff((1/x)*serreverse( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x +x^3*O(x^n))^2))), n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A^3)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
(Maxima) a(n):=sum(binomial(2*j+n, j)*binomial(2*j+n+1, 4*j+1)/(n+j+1), j, 0, (n)/2); /* Vladimir Kruchinin, May 28 2014 */
(PARI)
x='x; y='y; Fxy = (1 + x*y)*(1 + x^2*y^4) - y;
seq(N) = {
my(y0 = 1 + O('x^N), y1=0);
for (k = 1, N,
y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
if (y1 == y0, break()); y0 = y1);
Vec(y0);
};
seq(27) \\ Gheorghe Coserea, Nov 30 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 01 2011
STATUS
approved