Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Nov 30 2016 20:35:01
%S 1,1,2,7,26,102,424,1827,8078,36466,167376,778718,3664164,17407068,
%T 83375616,402198915,1952296598,9528757098,46735576816,230227356906,
%U 1138609205372,5651170500612,28138939936704,140527262919342,703704207921932,3532664478314484,17775185122527776
%N G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^2*A(x)^4).
%F G.f. A(x) satisfies:
%F (1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k) ).
%F (2) A(x) = (1/x)*Series_Reversion( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x)^2)) ).
%F (3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps).
%F (4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x*A(x)^3)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^k * A(x)^(3*k) ).
%F a(n) = sum(j=0..n/2, binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1)). - _Vladimir Kruchinin_, May 28 2014
%F a(n) ~ sqrt((1 + 2*r*s^3 + 3*r^2*s^4)/(2*Pi*s*(3 + 5*r*s))) / (2*n^(3/2)*r^(n+1/2)), where r = 0.187614989725738719..., s = 1.61178302212918247... are roots of the system of equations r + 4*r^2*s^3 + 5*r^3*s^4 = 1, (1+r*s)*(1+r^2*s^4) = s. - _Vaclav Kotesovec_, May 28 2014
%e G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 102*x^5 + 424*x^6 + 1827*x^7 +...
%e Related expansions:
%e A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1028*x^5 + 4570*x^6 +...
%e A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 375*x^4 + 1681*x^5 + 7660*x^6 +...
%e where A(x) = 1 + x*A(x) + x^2*A(x)^4 + x^3*A(x)^5.
%e The logarithm of the g.f. equals the series:
%e log(A(x)) = (1 + x*A(x)^3)*x + (1 + 2^2*x*A(x)^3 + x^2*A(x)^6)*x^2/2 +
%e (1 + 3^2*x*A(x)^3 + 3^2*x^2*A(x)^6 + x^3*A(x)^9)*x^3/3 +
%e (1 + 4^2*x*A(x)^3 + 6^2*x^2*A(x)^6 + 4^2*x^3*A(x)^9 + x^4*A(x)^12)*x^4/4 +
%e (1 + 5^2*x*A(x)^3 + 10^2*x^2*A(x)^6 + 10^2*x^3*A(x)^9 + 5^2*x^4*A(x)^12 + x^5*A(x)^15)*x^5/5 +...
%e more explicitly,
%e log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 75*x^4/4 + 356*x^5/5 + 1746*x^6/6 + 8660*x^7/7 + 43299*x^8/8 +...
%e Also, g.f. A(x) = G(x*A(x)) where G(x) = A(x/G(x)) (g.f. of A104545) begins:
%e G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
%t CoefficientList[1/x*InverseSeries[Series[2*x^3*(1+x)/(1 - Sqrt[1-4*x^2*(1+x)^2]), {x, 0, 20}], x],x] (* _Vaclav Kotesovec_, May 28 2014 *)
%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*(A+x*O(x^n))^4)); polcoeff(A, n)}
%o (PARI) {a(n)=polcoeff((1/x)*serreverse( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x +x^3*O(x^n))^2))), n)}
%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A^3)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
%o (Maxima) a(n):=sum(binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1),j,0,(n)/2); /* _Vladimir Kruchinin_, May 28 2014 */
%o (PARI)
%o x='x; y='y; Fxy = (1 + x*y)*(1 + x^2*y^4) - y;
%o seq(N) = {
%o my(y0 = 1 + O('x^N), y1=0);
%o for (k = 1, N,
%o y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
%o if (y1 == y0, break()); y0 = y1);
%o Vec(y0);
%o };
%o seq(27) \\ _Gheorghe Coserea_, Nov 30 2016
%Y Cf. A198953, A198951, A007863, A036765, A104545.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 01 2011