login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363773
a(n) = (4^(n+1) + (-1)^n + 5)/10.
2
1, 2, 7, 26, 103, 410, 1639, 6554, 26215, 104858, 419431, 1677722, 6710887, 26843546, 107374183, 429496730, 1717986919, 6871947674, 27487790695, 109951162778, 439804651111, 1759218604442, 7036874417767, 28147497671066, 112589990684263, 450359962737050
OFFSET
0,2
COMMENTS
a(n) is a part of the numerator of the approximate solutions x(n) = (Pi/2)*(1+5/((4^(n+1)-(-1)^(n+1)))) = a(n)*Pi/A015521(n+1) of D_d(exp(-i*x(n))) = Cl_d(x(n)+Pi) = 0, where D_d(exp(-i*x(n))) is the Bloch-Wigner-Ramakrishnan polylogarithm function and Cl_d(x(n)+Pi) is the Clausen function for odd d >= 3 and n >= 0.
LINKS
Evangelos G. Filothodoros, Anastasios C. Petkou, and Nicholas D. Vlachos, The fermion-boson map for large d, Nuclear Physics B, Volume 941, 2019, pp. 195-224.
FORMULA
a(n) = 1 + A037481(n).
G.f.: (1-2*x-2*x^2)/((x-1)*(4*x-1)*(x+1)).
E.g.f.: (4*e^(4*x) + e^-x + 5*e^x)/10.
MATHEMATICA
A363773list[nmax_]:=LinearRecurrence[{4, 1, -4}, {1, 2, 7}, nmax+1]; A363773list[50] (* Paolo Xausa, Jun 29 2023 *)
PROG
(Python)
def A363773(n): return (1<<(n<<1|1))//5+1 # Chai Wah Wu, Jun 28 2023
CROSSREFS
Sequence in context: A271844 A198957 A150537 * A119243 A264224 A150538
KEYWORD
nonn,easy
AUTHOR
STATUS
approved