login
A363773
a(n) = (4^(n+1) + (-1)^n + 5)/10.
2
1, 2, 7, 26, 103, 410, 1639, 6554, 26215, 104858, 419431, 1677722, 6710887, 26843546, 107374183, 429496730, 1717986919, 6871947674, 27487790695, 109951162778, 439804651111, 1759218604442, 7036874417767, 28147497671066, 112589990684263, 450359962737050
OFFSET
0,2
COMMENTS
a(n) is a part of the numerator of the approximate solutions x(n) = (Pi/2)*(1+5/((4^(n+1)-(-1)^(n+1)))) = a(n)*Pi/A015521(n+1) of D_d(exp(-i*x(n))) = Cl_d(x(n)+Pi) = 0, where D_d(exp(-i*x(n))) is the Bloch-Wigner-Ramakrishnan polylogarithm function and Cl_d(x(n)+Pi) is the Clausen function for odd d >= 3 and n >= 0.
LINKS
Evangelos G. Filothodoros, Anastasios C. Petkou, and Nicholas D. Vlachos, The fermion-boson map for large d, Nuclear Physics B, Volume 941, 2019, pp. 195-224.
FORMULA
a(n) = 1 + A037481(n).
G.f.: (1-2*x-2*x^2)/((x-1)*(4*x-1)*(x+1)).
E.g.f.: (4*e^(4*x) + e^-x + 5*e^x)/10.
MATHEMATICA
A363773list[nmax_]:=LinearRecurrence[{4, 1, -4}, {1, 2, 7}, nmax+1]; A363773list[50] (* Paolo Xausa, Jun 29 2023 *)
PROG
(Python)
def A363773(n): return (1<<(n<<1|1))//5+1 # Chai Wah Wu, Jun 28 2023
CROSSREFS
Sequence in context: A271844 A198957 A150537 * A119243 A264224 A150538
KEYWORD
nonn,easy
AUTHOR
STATUS
approved