login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363774
Expansion of 1/(Sum_{k>=0} x^(k^2))^2.
1
1, -2, 3, -4, 3, 0, -5, 12, -18, 18, -9, -12, 44, -76, 93, -76, 5, 120, -273, 400, -414, 228, 200, -828, 1480, -1842, 1539, -268, -2004, 4824, -7168, 7568, -4518, -2784, 13577, -24900, 31563, -27236, 6816, 30308, -77010, 116844, -126018, 80180, 34140, -205932, 389275
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = -(2/n) * Sum_{k=1..n} A162552(k) * a(n-k).
PROG
(PARI) my(N=50, x='x+O('x^N)); Vec(1/sum(k=0, sqrtint(N), x^k^2)^2)
CROSSREFS
Convolution inverse of A000925.
Column k=2 of A363778.
Sequence in context: A103300 A305402 A213394 * A358606 A360027 A341164
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Jun 21 2023
STATUS
approved