login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274621
Coefficients in the expansion Product_{ n>=1 } (1-q^(2n-1))^2/(1-q^(2n))^2.
12
1, -2, 3, -6, 11, -18, 28, -44, 69, -104, 152, -222, 323, -460, 645, -902, 1254, -1722, 2343, -3174, 4278, -5722, 7601, -10056, 13250, -17358, 22623, -29382, 38021, -48984, 62857, -80404, 102528, -130282, 165002, -208398, 262495, -329666, 412878, -515840, 642941, -799362, 991478
OFFSET
0,2
COMMENTS
This is the reciprocal of the g.f. for A008441.
From Wolfdieter Lang, Jul 05 2016: (Start)
The g.f. is the square of the one for A106507.
Expansion of 1/(k/(4*q^(1/2)) * (2/Pi)*K(k)) in powers of q^2, where k is the modulus (k^2 is the parameter), K is the real quarter period and q is the Jacobi nome of elliptic functions. See a similar Jul 05 2016 comment on A008441. This appears as a factor in the sn and cn formulas of Abramowitz-Stegun. p. 575, 16.23.1 and 16.23.2. (End)
REFERENCES
R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 575, 16.23.1 and 16.23.2.
FORMULA
From Wolfdieter Lang, Jul 05 2016: (Start)
G.f.: 1/(theta_2(0, sqrt(q))/(2*q^(1/8)))^2, with the Jacobi theta_2 function.
G.f.: 1/(Sum_{n >= 0} q^(n*(n+1)/2))^2.
G.f.: 1/(Prod_{n >= 1} (1 - q^n) * (1 + q^n)^2)^2 = 1/(Prod_{n >= 1} (1 - q^(2*n)) * (1 + q^n ))^2 = Prod_{n >= 1} (1 - q^(2n-1))^2 / (1 - q^(2n))^2. For the last equality, giving the g.f. of the name, see the Euler identity, mentioned in a Jul 05 2016 comment of A010054. (End)
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(5/2)*n^(5/4)). - Vaclav Kotesovec, Jul 05 2016
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1 - x^(2*k-1))^2 / (1 - x^(2*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
CROSSREFS
If the signs are deleted we get A273225.
Sequence in context: A147388 A180712 A273225 * A291725 A003479 A093367
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Jul 03 2016
STATUS
approved