login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180712
Self-convolution of A180711.
2
1, 2, 3, 6, 11, 18, 28, 42, 61, 88, 124, 168, 227, 302, 394, 510, 653, 826, 1037, 1290, 1591, 1952, 2378, 2876, 3461, 4144, 4935, 5850, 6905, 8114, 9500, 11080, 12875, 14914, 17218, 19816, 22740, 26024, 29703, 33812, 38395, 43500, 49170, 55460
OFFSET
0,2
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 28*x^6 +...
The square-root of the g.f. begins:
sqrt(A(x)) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 9*x^9 + 11*x^10 + 12*x^11 + 15*x^12 + 17*x^13 + 19*x^14 +...
The integer part of the square-root of the coefficients of g.f. A(x) equals the respective coefficients of sqrt(A(x)), as illustrated by:
[sqrt(1)]=1; [sqrt(2)]=1; [sqrt(3)]=1; [sqrt(6)]=2; [sqrt(11)]=3;
[sqrt(18)]=4; [sqrt(28)]=5; [sqrt(42)]=6; [sqrt(61)]=7; [sqrt(88)]=9;
[sqrt(124)]=11; [sqrt(168)]=12; [sqrt(227)]=15; [sqrt(302)]=17; ...
PROG
(PARI) {a(n)=local(A=[1, 1, 1, t], T); for(i=1, n-2, for(N=A[ #A-1], 2*A[ #A-1], T=subst(Vec(Ser(A)^2)[ #A], t, N); if(sqrtint(T)==N, A[ #A]=N; A=concat(A, t); break))); Vec(Ser(A)^2)[n+1]}
CROSSREFS
Cf. A180711.
Sequence in context: A059100 A131512 A147388 * A273225 A274621 A291725
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 22 2010
STATUS
approved