login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180711
a(n) = [x^n] A(x) = floor(sqrt( b(n) )) where b(n) = [x^n] A(x)^2.
2
1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 15, 17, 19, 22, 25, 28, 32, 35, 39, 44, 48, 53, 58, 64, 70, 76, 83, 90, 97, 105, 113, 122, 131, 140, 150, 161, 172, 183, 195, 208, 221, 235, 249, 264, 280, 296, 313, 331, 349, 368, 387, 408, 429, 451, 474, 497, 522, 547, 573, 600
OFFSET
0,4
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 +...
The square of the g.f. A(x) begins:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 28*x^6 + 42*x^7 + 61*x^8 + 88*x^9 + 124*x^10 + 168*x^11 + 227*x^12 + 302*x^13 + 394*x^14 +...
The integer part of the square-root of the coefficients of the square of the g.f. A(x) equals the respective coefficients of A(x), as illustrated by:
[sqrt(1)]=1; [sqrt(2)]=1; [sqrt(3)]=1; [sqrt(6)]=2; [sqrt(11)]=3;
[sqrt(18)]=4; [sqrt(28)]=5; [sqrt(42)]=6; [sqrt(61)]=7; [sqrt(88)]=9;
[sqrt(124)]=11; [sqrt(168)]=12; [sqrt(227)]=15; [sqrt(302)]=17; ...
PROG
(PARI) {a(n)=local(A=[1, 1, 1, t], T); for(i=1, n-2, for(N=A[ #A-1], 2*A[ #A-1], T=subst(Vec(Ser(A)^2)[ #A], t, N); if(sqrtint(T)==N, A[ #A]=N; A=concat(A, t); break))); A[n+1]}
CROSSREFS
Cf. A180712.
Sequence in context: A337133 A062490 A211543 * A363938 A032957 A362132
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 22 2010
STATUS
approved