login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274622
Irregular triangular array read by rows: coefficients in expansion of Gosper's q-sine function sin_q(Pi*z).
3
1, 1, 2, 2, 1, 4, 4, 1, 2, 8, 8, 2, 4, 14, 14, 4, 8, 24, 24, 8, 1, 14, 40, 40, 14, 1, 2, 24, 64, 64, 24, 2, 4, 40, 100, 100, 40, 4, 8, 64, 154, 154, 64, 8, 14, 100, 232, 232, 100, 14, 24, 154, 344, 344, 154, 24, 1, 40, 232, 504, 504, 232, 40, 1, 2, 64, 344, 728, 728, 344, 64, 2, 4, 100, 504, 1040, 1040, 504, 100, 4
OFFSET
0,3
REFERENCES
R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105.
EXAMPLE
The array begins:
.........1,1,
.........2,2,
.......1,4,4,1,
.......2,8,8,2,
.......4,14,14,4,
.......8,24,24,8,
....1,14,40,40,14,1,
....2,24,64,64,24,2,
....4,40,100,100,40,4,
....8,64,154,154,64,8,
....14,100,232,232,100,14,
....24,154,344,344,154,24,
..1,40,232,504,504,232,40,1,
..2,64,344,728,728,344,64,2,
..4,100,504,1040,1040,504,100,4,
...
MATHEMATICA
nmax = 14; kmax = 4; QP = QPochhammer; s = QP[q^2]/QP[q]^2 + O[q]^(nmax + 1); col[1] = CoefficientList [s, q]; col[k_] := Join[Array[0&, k(k-1)], Take[col[1], nmax-k(k-1)+1]]; T = Transpose[Array[col, kmax]]; ro[n_] := DeleteCases[T[[n+1]], 0]; row[n_] := Join[Reverse[ro[n]], ro[n]]; Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Oct 07 2016 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Jul 04 2016
STATUS
approved