login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110090
Numerators of sequence of rationals defined by r(n) = n for n<=1 and for n>1: r(n) = (sum of denominators of r(n-1) and r(n-2))/(sum of numerators of r(n-1) and r(n-2)).
3
0, 1, 2, 2, 1, 4, 4, 1, 6, 6, 1, 8, 8, 1, 10, 10, 1, 12, 12, 1, 14, 14, 1, 16, 16, 1, 18, 18, 1, 20, 20, 1, 22, 22, 1, 24, 24, 1, 26, 26, 1, 28, 28, 1, 30, 30, 1, 32, 32, 1, 34, 34, 1, 36, 36, 1, 38, 38, 1, 40, 40, 1, 42, 42, 1, 44, 44, 1, 46, 46, 1, 48, 48, 1, 50, 50, 1, 52, 52, 1, 54, 54
OFFSET
0,3
COMMENTS
r(n) = a(n) / A110091(n);
a(n) = (A110091(n-1) + A110091(n-2))/GCD(a(n-1) + a(n-2), A110091(n-1) + A110091(n-2)).
r --> 1.
FORMULA
a(3*k) = 2*k, a(3*k+1) = 1, a(3*k+2) = 2*(k+1).
a(n) = (1/9)*(4*n + 5 + (4*n-4)*cos((2*n+1)*Pi/3) + sqrt(3)*sin(2*(n-1)*Pi/3) - sqrt(3)*sin(4*(n-1)*Pi/3)). - Wesley Ivan Hurt, Sep 25 2017
From Vincenzo Librandi, Sep 27 2017: (Start)
G.f.: x*(1 +2*x +2*x^2 -x^3)/((1-x)^2*(1+x+x^2)^2).
a(n) = 2*a(n-3) - a(n-6) for n>8. (End)
EXAMPLE
First terms of r: 0 1 2 2/3 1 4/3 4/5 1 6/5 6/7 1 8/7 ...:
r(2) = (1+1)/(1+0) = 2, r(3) = (1+1)/(2+1) = 2/3, r(4) = (3+1)/(2+2) = 1,
r(5) = (1+3)/(1+2) = 4/3, r(6) = (3+1)/(4+1) = 4/5, ...
MATHEMATICA
Join[{0, 1}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {2, 2, 1, 4, 4, 1}, 100]] (* or *) CoefficientList[Series[x*(1+2*x+2*x^2-x^3)/((1-x)^2*(1+x+x^2)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2017 *)
PROG
(Magma) I:=[0, 1, 2, 2, 1, 4, 4, 1]; [n le 8 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 27 2017
(Sage)
def A110090_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+2*x+2*x^2-x^3)/(1-x^3)^2 ).list()
A110090_list(100) # G. C. Greubel, Jun 16 2021
CROSSREFS
Cf. A110091 (denominators).
Sequence in context: A334770 A274622 A138189 * A196831 A092848 A128111
KEYWORD
nonn,easy,frac
AUTHOR
Reinhard Zumkeller, Jul 14 2005
STATUS
approved