OFFSET
0,3
COMMENTS
The function f(u, p) = (1/2)*(1+1/(sqrt(1-u^2))) * exp(p*sqrt(1-u^2)) was found while studying the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction, see the Meijer link.
The Taylor expansion of f(u, p) leads to the number triangle T(n, k), see the example section.
Normalization of the triangle terms, dividing the T(n, k) by T(n-k, 0), leads to A084534.
REFERENCES
J. W. Goodman, Introduction to Fourier Optics, 1996.
A. Papoulis, Systems and Transforms with Applications in Optics, 1968.
LINKS
Andrew Howroyd, Rows n=0..50 of triangle, flattened
M. J. Bastiaans, The Wigner distribution function applied to optical signals and systems, Optics Communications, Vol. 25, nr. 1, pp. 26-30, 1978.
H. J. Butterweck, General theory of linear, coherent optical data processing systems, Journal of the Optical Society of America, Vol. 67, nr. 1, pp. 60-70, 1977.
J. W. Meijer, A note on optical diffraction, 1979.
FORMULA
T(n, k) = (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!), n > 0 and 0 <= k <= n, T(0, 0) = 1.
EXAMPLE
The first few terms of the Taylor expansion of f(u; p) are:
f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
The first few rows of the T(n, k) triangle are:
n=0: 1
n=1: 1, -2
n=2: 3, -4, 2
n=3: 15, -18, 9, -2
n=4: 105, -120, 60, -16, 2
n=5: 945, -1050, 525, -150, 25, -2
n=6: 10395, -11340, 5670, -1680, 315, -36, 2
MAPLE
T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
MATHEMATICA
Table[If[n==0 && k==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
PROG
(PARI) T(n, k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
(Magma) [[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
CROSSREFS
KEYWORD
AUTHOR
Johannes W. Meijer, May 31 2018
STATUS
approved