The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305402 A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)). 1
 1, 1, -2, 3, -4, 2, 15, -18, 9, -2, 105, -120, 60, -16, 2, 945, -1050, 525, -150, 25, -2, 10395, -11340, 5670, -1680, 315, -36, 2, 135135, -145530, 72765, -22050, 4410, -588, 49, -2, 2027025, -2162160, 1081080, -332640, 69300, -10080, 1008, -64, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The function f(u, p) = (1/2)*(1+1/(sqrt(1-u^2))) * exp(p*sqrt(1-u^2)) was found while studying the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction, see the Meijer link. The Taylor expansion of f(u, p) leads to the number triangle T(n, k), see the example section. Normalization of the triangle terms, dividing the T(n, k) by T(n-k, 0), leads to A084534. The row sums equal A003436, n >= 2, respectively A231622, n >= 1. REFERENCES J. W. Goodman, Introduction to Fourier Optics, 1996. A. Papoulis, Systems and Transforms with Applications in Optics, 1968. LINKS Andrew Howroyd, Rows n=0..50 of triangle, flattened M. J. Bastiaans, The Wigner distribution function applied to optical signals and systems, Optics Communications, Vol. 25, nr. 1, pp. 26-30, 1978. H. J. Butterweck, General theory of linear, coherent optical data processing systems, Journal of the Optical Society of America, Vol. 67, nr. 1, pp. 60-70, 1977. J. W. Meijer, A note on optical diffraction, 1979. FORMULA T(n, k) = (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!), n > 0 and 0 <= k <= n, T(0, 0) = 1. T(n, k) = (-1)^k*A001147(n-k)*A084534(n, k), n >= 0 and 0 <= k <= n. T(n, k) = 2^(2*(k-n)+1)*A001147(n-k)*A127674(n, n-k), n > 0 and 0 <= k <= n, T(0, 0) = 1. T(n, k) = (-1)^k*(A001497(n, k) + A132062(n, k)), n >= 1, T(0,0) = 1. EXAMPLE The first few terms of the Taylor expansion of f(u; p) are: f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... ) The first few rows of the T(n, k) triangle are: n=0:     1 n=1:     1,     -2 n=2:     3,     -4,    2 n=3:    15,    -18,    9,    -2 n=4:   105,   -120,   60,   -16,   2 n=5:   945,  -1050,  525,  -150,  25,  -2 n=6: 10395, -11340, 5670, -1680, 315, -36, 2 MAPLE T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8); MATHEMATICA Table[If[n==0 && k==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 08 2018 *) PROG (PARI) T(n, k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018 (MAGMA) [[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018 CROSSREFS Cf. A003436, A231622, A032184, A084534, A127674, A132062, A001497. Cf. Related to the left hand columns: A001147, A001193, A261065. Cf. Related to the right hand columns: A280560, A162395, A006011, A040977, A053347, A054334, A266561. Sequence in context: A117009 A204842 A103300 * A213394 A237981 A299730 Adjacent sequences:  A305399 A305400 A305401 * A305403 A305404 A305405 KEYWORD sign,easy,tabl AUTHOR Johannes W. Meijer, May 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 19:58 EDT 2020. Contains 333103 sequences. (Running on oeis4.)