login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053347
a(n) = binomial(n+7, 7)*(n+4)/4.
22
1, 10, 54, 210, 660, 1782, 4290, 9438, 19305, 37180, 68068, 119340, 201552, 329460, 523260, 810084, 1225785, 1817046, 2643850, 3782350, 5328180, 7400250, 10145070, 13741650, 18407025, 24402456, 32040360, 41692024, 53796160
OFFSET
0,2
COMMENTS
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-9) is the number of 9-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
8-dimensional square numbers, seventh partial sums of binomial transform of [1, 2, 0, 0, 0, ...]. a(n) = sum{i=0,n,C(n+7, i+7)*b(i)}, where b(i) = [1, 2, 0, 0, 0, ...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
2*a(n) is number of ways to place 7 queens on an (n+7) X (n+7) chessboard so that they diagonally attack each other exactly 21 times. The maximal possible attack number, p=binomial(k,2)=21 for k=7 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015
Coefficients in the terminating series identity 1 - 10*n/(n + 9) + 54*n*(n - 1)/((n + 9)*(n + 10)) - 210*n*(n - 1)*(n - 2)/((n + 9)*(n + 10)*(n + 11)) + ... = 0 for n = 1,2,3,.... Cf. A050486. - Peter Bala, Feb 18 2019
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = ((-1)^n)*A053120(2*n+8, 8)/2^7 (1/128 of ninth unsigned column of Chebyshev T-triangle, zeros omitted).
G.f.: (1+x)/(1-x)^9.
a(n) = 2*C(n+8, 8) - C(n+7, 7). - Paul Barry, Mar 04 2003
a(n) = A027803(n-3)/35 = C(n+4, n)*C(n+7, 4)/35. - Zerinvary Lajos, May 25 2005
a(n) = C(n+7, 7) + 2*C(n+7, 8). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = (n^8 + 32*n^7 + 434*n^6 + 3248*n^5 + 14609*n^4 + 40208*n^3 + 65596*n^2 + 57312*n + 20160)/20160. - Chai Wah Wu, Jan 24 2016
Sum_{n>=0} 1/a(n) = 41503/45 - 280/3*Pi^2. - Jaume Oliver Lafont, Jul 17 2017
Sum_{n>=0} (-1)^n/a(n) = 140*Pi^2/3 - 1379/3. - Amiram Eldar, Jan 25 2022
MAPLE
A053347:=n->binomial(n+7, 7)*(n+4)/4: seq(A053347(n), n=0..50); # Wesley Ivan Hurt, Jul 16 2017
MATHEMATICA
s1=s2=s3=s4=s5=s6=0; lst={}; Do[s1+=n^2; s2+=s1; s3+=s2; s4+=s3; s5+=s4; s6+=s5; AppendTo[lst, s6], {n, 0, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
CoefficientList[Series[(1 + x) / (1 - x)^9, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
Table[SeriesCoefficient[(1 + x)/(1 - x)^9, {x, 0, n}], {n, 0, 28}] (* or *)
Table[Binomial[n + 7, 7] (n + 4)/4, {n, 0, 28}] (* Michael De Vlieger, Dec 31 2015 *)
PROG
(PARI) a(n)=binomial(n+7, 7)*(n+4)/4 \\ Charles R Greathouse IV, Jun 10 2011
(Magma) [Binomial(n+7, 7)+2*Binomial(n+7, 8): n in [0..35]]; // Vincenzo Librandi, Jun 09 2013
(Python)
A053347_list, m = [], [2]+[1]*8
for _ in range(10**2):
A053347_list.append(m[-1])
print(m[-1])
for i in range(8):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
CROSSREFS
Partial sums of A050486.
Sequence in context: A161458 A162248 A161755 * A267172 A266764 A036600
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 06 2000
STATUS
approved