Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:46:21
%S 1,1,-2,3,-4,2,15,-18,9,-2,105,-120,60,-16,2,945,-1050,525,-150,25,-2,
%T 10395,-11340,5670,-1680,315,-36,2,135135,-145530,72765,-22050,4410,
%U -588,49,-2,2027025,-2162160,1081080,-332640,69300,-10080,1008,-64,2
%N A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)).
%C The function f(u, p) = (1/2)*(1+1/(sqrt(1-u^2))) * exp(p*sqrt(1-u^2)) was found while studying the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction, see the Meijer link.
%C The Taylor expansion of f(u, p) leads to the number triangle T(n, k), see the example section.
%C Normalization of the triangle terms, dividing the T(n, k) by T(n-k, 0), leads to A084534.
%C The row sums equal A003436, n >= 2, respectively A231622, n >= 1.
%D J. W. Goodman, Introduction to Fourier Optics, 1996.
%D A. Papoulis, Systems and Transforms with Applications in Optics, 1968.
%H Andrew Howroyd, <a href="/A305402/b305402.txt">Rows n=0..50 of triangle, flattened</a>
%H M. J. Bastiaans, <a href="https://doi.org/10.1016/0030-4018(78)90080-9">The Wigner distribution function applied to optical signals and systems</a>, Optics Communications, Vol. 25, nr. 1, pp. 26-30, 1978.
%H H. J. Butterweck, <a href="https://doi.org/10.1364/JOSA.67.000060">General theory of linear, coherent optical data processing systems</a>, Journal of the Optical Society of America, Vol. 67, nr. 1, pp. 60-70, 1977.
%H J. W. Meijer, <a href="/A305402/a305402.pdf">A note on optical diffraction</a>, 1979.
%F T(n, k) = (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!), n > 0 and 0 <= k <= n, T(0, 0) = 1.
%F T(n, k) = (-1)^k*A001147(n-k)*A084534(n, k), n >= 0 and 0 <= k <= n.
%F T(n, k) = 2^(2*(k-n)+1)*A001147(n-k)*A127674(n, n-k), n > 0 and 0 <= k <= n, T(0, 0) = 1.
%F T(n, k) = (-1)^k*(A001497(n, k) + A132062(n, k)), n >= 1, T(0,0) = 1.
%e The first few terms of the Taylor expansion of f(u; p) are:
%e f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
%e The first few rows of the T(n, k) triangle are:
%e n=0: 1
%e n=1: 1, -2
%e n=2: 3, -4, 2
%e n=3: 15, -18, 9, -2
%e n=4: 105, -120, 60, -16, 2
%e n=5: 945, -1050, 525, -150, 25, -2
%e n=6: 10395, -11340, 5670, -1680, 315, -36, 2
%p T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
%t Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 08 2018 *)
%o (PARI) T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
%o for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ _Andrew Howroyd_, Nov 08 2018
%o (Magma) [[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // _G. C. Greubel_, Nov 08 2018
%Y Cf. A003436, A231622, A032184, A084534, A127674, A132062, A001497.
%Y Cf. Related to the left hand columns: A001147, A001193, A261065.
%Y Cf. Related to the right hand columns: A280560, A162395, A006011, A040977, A053347, A054334, A266561.
%K sign,easy,tabl
%O 0,3
%A _Johannes W. Meijer_, May 31 2018