login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231622
(2*n+1)*a(n+1) = (4*n^2+1)*a(n) + (2*n+1)*a(n-1) with n>1, a(0)=2, a(1)=-1.
2
2, -1, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
OFFSET
0,1
LINKS
FORMULA
E.g.f. A(x) satisfies 0 = f(A(x), A'(x), A''(x)) where f(u0, u1, u2) = (3 + 2*x)*u0 + (5 + 2*x)*u1 + (-1 + 4*x^2)*u2.
a(-n) = a(n). a(n) = A003436(n) if n>1.
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2). - Peter Luschny, Nov 10 2016
EXAMPLE
G.f. = 2 - x + x^2 + 4*x^3 + 31*x^4 + 293*x^5 + 3326*x^6 + 44189*x^7 + ...
MAPLE
A231622 := n -> (-1)^n*2*hypergeom([n, -n], [], 1/2):
seq(simplify(A231622(n)), n=0..19); # Peter Luschny, Nov 10 2016
MATHEMATICA
a[ n_] := With[{m = Abs@n}, Boole[m == 0] + (2*m - 1)!! Hypergeometric1F1[ -m, 1 - 2*m, -2]]
PROG
(PARI) {a(n) = n=abs(n); if( n<2, 2 - 3*(n>0), ( a(n-1) * (4*n^2 - 8*n + 5) + a(n-2) * (2*n-1) ) / (2*n-3))}
CROSSREFS
Cf. A003436.
Sequence in context: A326570 A184880 A257859 * A165623 A374358 A264878
KEYWORD
sign
AUTHOR
Michael Somos, Nov 11 2013
STATUS
approved