OFFSET
0,2
COMMENTS
Solution to y' = A(x), y(0) = 0 satisfies 0 = x^2 + 2*y^2*x - y^2, where A(x) = e.g.f. - Michael Somos, Mar 11 2004
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 166-167.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
FORMULA
E.g.f.: (1-x)/(1-2*x)^(3/2) = d/dx (x/(1-2*x)^(1/2)).
a(n) = uppermost term in the vector (M(T))^n * [1,0,0,0,...], where T = Transpose and M = the production matrix:
1, 2;
1, 2, 3;
1, 2, 3, 4;
1, 2, 3, 4, 5;
...
- Gary W. Adamson, Jul 08 2011
G.f.: A(x) = 1 + 2*x/(G(0) - 2*x) ; G(k) = 1 + k + x*(k+2)*(2*k+1) - x*(k+1)*(k+3)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
G.f.: U(0)/2 where U(k) = 1 + (2*k+1)/(1 - x/(x + 1/U(k+1))) (continued fraction). - Sergei N. Gladkovskii, Sep 25 2012
From Peter Bala, Nov 07 2016 and May 14 2020: (Start)
a(n) = (n + 1)*(2*n - 1)/n * a(n-1) with a(0) = 1.
a(n) = 2*a(n-1) + (2*n - 3)*(2*n + 1)*a(n-2) with a(0) = 1, a(1) = 2.
(End)
MAPLE
f:= x-> x/sqrt(1-2*x): a:= n-> subs(x=0, (D@@(n+1))(f)(x)):
seq(a(n), n=0..20); # Zerinvary Lajos, Apr 04 2009
# second Maple program:
a:= n-> (n+1)*doublefactorial(2*n-1):
seq(a(n), n=0..23); # Alois P. Heinz, May 13 2020
MATHEMATICA
Table[(n+1) (2*n-1)!!, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
PROG
(PARI) a(n)=if(n<0, 0, (n+1)*(2*n)!/(2^n*n!))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better description from Wouter Meeussen, Mar 08 2001
More terms from James A. Sellers, May 01 2000
STATUS
approved