login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120014
Coefficients of x^n in the n-th iteration of the g.f. of A120009, so that: a(n) = [x^n] { (x-x^2) o x/(1-n*x) o (1-sqrt(1-4*x))/2 } for n>=1.
3
1, 2, 9, 60, 530, 5892, 79681, 1276760, 23729310, 502780580, 11974950746, 316917570312, 9230453871756, 293492484431720, 10117826259791025, 375952605020796720, 14980065429077943734, 637215061582781559972
OFFSET
1,2
COMMENTS
a(n) is divisible by n for n>=1; a(n)/n = A120016(n).
Main diagonal of table (A120013) of iterations of A120009.
FORMULA
a(n) = [x^n] x*((1-n+n^2) - n^2*(n+1)*x - n*(1-(n+2)*x)*C(x) )/(1-n+n^2*x)^2, where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).
a(n) = n^(n-1) - Sum_{k=2..n-2} n^(k-1)*k*(k-1)*(n-k-1)*(2*n-k-2)!/(n-k)!/n!
EXAMPLE
Successive iterations of F(x), the g.f. of A120009, begin:
F(x) = (1)x + x^2 + x^3 - 6x^5 - 33x^6 - 143x^7 - 572x^8 - 2210x^9 +...
F(F(x)) = x + (2)x^2 + 4x^3 + 6x^4 - 4x^5 - 100x^6 - 664x^7 +...
F(F(F(x))) = x + 3x^2 + (9)x^3 + 24x^4 + 42x^5 - 87x^6 - 1575x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + (60)x^4 + 192x^5 + 360x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 120x^4 + (530)x^5 +1955x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 +210x^4 +1164x^5 + (5892)x^6 +...
PROG
(PARI) a(n)=local(k=n, x=X+X^3*O(X^n)); polcoeff( x*((1-k+k^2)-k^2*(k+1)*x-k*(1-(k+2)*x)*(1-sqrt(1-4*x))/2/x)/(1-k+k^2*x)^2, n, X)
(PARI) /* Generated as the n-th self-composition of A120009: */ a(n)=local(F=((1-3*x)*sqrt(1-4*x+x^3*O(x^n)) - (1-x)*(1-4*x))/(2*x^2), G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))
(PARI) a(n)=n^(n-1)-sum(k=2, n-2, n^(k-1)*k*(k-1)*(n-k-1)*(2*n-k-2)!/(n-k)!)/n!
CROSSREFS
Cf. A120016 (a(n)/n); A120009, A127275 (g.f.=F(F(x))), A120012 (g.f.=F(F(F(x)))); A000108 (Catalan); A120015, A120020, A120013.
Sequence in context: A168449 A001193 A161391 * A036774 A306065 A166882
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 07 2006, Jun 09 2006
STATUS
approved