login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120009
G.f.: A(x) = (x-x^2) o x/(1-x) o (1-sqrt(1-4*x))/2, a composition of functions involving the Catalan function and its inverse.
8
1, 1, 1, 0, -6, -33, -143, -572, -2210, -8398, -31654, -118864, -445740, -1671525, -6273135, -23571780, -88704330, -334347090, -1262330850, -4773905760, -18083762580, -68611922730, -260725306374, -992233959480, -3781513867796, -14431491699548, -55147299002348
OFFSET
1,5
COMMENTS
The n-th self-composition of A(x) is: (x-x^2) o x/(1-n*x) o (1-sqrt(1-4*x))/2. See A120010 for the transpose of the composition of the same functions.
FORMULA
G.f.: A(x) = ((1-3*x)*sqrt(1-4*x) - (1-x)*(1-4*x))/(2*x^2) = x*C(x)^2 - x^2*C(x)^4 where C(x) is the Catalan function (A000108).
a(n) = C(2*n,n)/(n+1) - 4*C(2*n-1,n-2)/(n+2).
a(n) = 3*Catalan(n) - Catalan(n+1). - David Callan, Nov 21 2006
D-finite with recurrence: (n+2)*a(n) + (-7*n-2)*a(n-1) + 6*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Jan 20 2020, corrected Feb 16 2020
From Peter Bala, Feb 02 2024: (Start)
a(n) = 3*(-1)^n*Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*(2*k + 2)!/((k + 3)!*k!).
G.f.: x/(1 - 4*x)*c(-x/(1 - 4*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
E.g.f.: exp(2*x)*(2*BesselI(0, 2*x) - 3*BesselI(1, 2*x) + BesselI(2, 2*x)) - 2. - Stefano Spezia, Dec 31 2024
EXAMPLE
A(x) = x + x^2 + x^3 - 6*x^5 - 33*x^6 - 143*x^7 - 572*x^8 - 2210*x^9 + ...
A(x) = x*C(x)^2 - x^2*C(x)^4 where C(x) is Catalan function so that:
x*C(x)^2 = x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ...
x^2*C(x)^4 = x^2 + 4*x^3 + 14*x^4 + 48*x^5 + 165*x^6 + 572*x^7 + ...
MATHEMATICA
f[n_]:=3*CatalanNumber[n] -CatalanNumber[n+1]; Array[f, 30, 1] (* Vincenzo Librandi, Jan 02 2025 *)
PROG
(PARI) a(n)=binomial(2*n, n)/(n+1)-4*binomial(2*n-1, n-2)/(n+2)
(Magma) [3*Catalan(n) - Catalan(n+1): n in [1..30]]; // Vincenzo Librandi, Jan 02 2025
CROSSREFS
Cf. A120010 (composition transpose), A000108 (Catalan), A000245.
Cf. A003517 (|a(n+1)|-|a(n)|). - Olivier Gérard, Oct 11 2012
Sequence in context: A263479 A073375 A089097 * A074087 A297592 A255613
KEYWORD
sign,easy,changed
AUTHOR
Paul D. Hanna, Jun 03 2006
STATUS
approved