login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166882
a(n) = coefficient of x^n in the n-th iteration of (x + x^2 + x^3) for n>=1.
4
1, 2, 9, 60, 560, 6720, 98826, 1722084, 34700940, 793894860, 20329008975, 576026191026, 17893288364952, 604630781494558, 22079861395250568, 866509034147074284, 36367487433847501620, 1625458443704631873072
OFFSET
1,2
EXAMPLE
Let F_n(x) denote the n-th iteration of F(x) = x + x^2 + x^3;
then coefficients in the successive iterations of F(x) begin:
F(x):[(1), 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
F_2: [1, (2), 4, 6, 8, 8, 6, 3, 1, 0, 0, ...];
F_3: [1, 3, (9), 24, 60, 138, 294, 579, 1053, 1767, 2739, ...];
F_4: [1, 4, 16, (60), 216, 744, 2460, 7818, 23910, 70446, 200160, ...];
F_5: [1, 5, 25, 120, (560), 2540, 11220, 48330, 203230, 835080, ...];
F_6: [1, 6, 36, 210, 1200, (6720), 36930, 199365, 1058175, ...];
F_7: [1, 7, 49, 336, 2268, 15078, (98826), 639093, 4080531, ...];
F_8: [1, 8, 64, 504, 3920, 30128, 228984, (1722084), 12821788, ...];
F_9: [1, 9, 81, 720, 6336, 55224, 477000, 4085028, (34700940), ...];
F_10:[1, 10, 100, 990, 9720, 94680, 915390, 8787735, 83795085, (793894860), ...]; ...
where the coefficients along the diagonal (shown above in parenthesis)
form the initial terms of this sequence.
PROG
(PARI) {a(n)=local(F=x+x^2+x^3, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 22 2009
STATUS
approved