login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166879
G.f.: A(x) = exp( Sum_{n>=1} A002203(n^2)/2*x^n/n ).
3
1, 1, 9, 473, 166969, 371186249, 5020831641761, 407273265807001089, 196573413317730320842177, 561769503571822735164882969633, 9474113076734769687535254457293566857, 940665572280219007549184269220597591870817337
OFFSET
0,3
COMMENTS
A002203 equals the logarithmic derivative of the Pell numbers (A000129).
Note that A002203(n^2) = (1+sqrt(2))^(n^2) + (1-sqrt(2))^(n^2).
LINKS
FORMULA
a(n) == 1 (mod 8).
a(n) = (1/n)*Sum_{k=1..n} A002203(k^2)/2*a(n-k) for n>0 with a(0)=1.
Self-convolution yields A165937.
EXAMPLE
G.f.: A(x) = 1 + x + 9*x^2 + 473*x^3 + 166969*x^4 + 371186249*x^5 +...
log(A(x)) = x + 17*x^2/2 + 1393*x^3/3 + 665857*x^4/4 + 1855077841*x^5/5 + 30122754096401*x^6/6 + 2850877693509864481*x^7/7 +...+ A002203(n^2)/2*x^n/n +...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, polcoeff((1-x)/(1-2*x-x^2+x*O(x^(m^2))), m^2)*x^m/m)+x*O(x^n)), n))}
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, polcoeff((1-x)/(1-2*x-x^2+x*O(x^(k^2))), k^2)*a(n-k)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 22 2009
STATUS
approved