login
A166877
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
1
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843735, 7324218600, 36621092640, 183105461400, 915527298000, 4577636445000, 22888182000000, 114440908875000, 572204538750000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
FORMULA
G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[12]]+t^13+1, den=Total[-4 t^Range[12]]+ 10t^13+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Jul 27 2011 *)
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 27 2016 *)
CROSSREFS
Sequence in context: A165777 A166364 A166500 * A167107 A167651 A167897
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved