login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165937
G.f.: A(x) = exp( Sum_{n>=1} A002203(n^2)*x^n/n ).
4
1, 2, 19, 964, 334965, 742714950, 10042408885191, 814556580116590856, 393147641272746246076745, 1123539400297807898234860367690, 18948227277012085227250633551784337179, 1881331163508674280605070386666674939623268684
OFFSET
0,2
COMMENTS
A002203 equals the logarithmic derivative of the Pell numbers (A000129).
Note that A002203(n^2) = (1+sqrt(2))^(n^2) + (1-sqrt(2))^(n^2).
Given g.f. A(x), (1-x)^(1/4) * A(x)^(1/8) is an integer series.
FORMULA
Logarithmic derivative equals A165938.
Self-convolution of A166879.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 19*x^2 + 964*x^3 + 334965*x^4 + 742714950*x^5 +...
log(A(x)) = 2*x + 34*x^2/2 + 2786*x^3/3 + 1331714*x^4/4 + 3710155682*x^5/5 + 60245508192802*x^6/6 + 5701755387019728962*x^7/7 +...+ A002203(n^2)*x^n/n +...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^(m^2))), m^2)*x^m/m)+x*O(x^(n^2))), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 18 2009
STATUS
approved