login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = exp( Sum_{n>=1} A002203(n^2)*x^n/n ).
4

%I #8 Aug 16 2012 23:19:33

%S 1,2,19,964,334965,742714950,10042408885191,814556580116590856,

%T 393147641272746246076745,1123539400297807898234860367690,

%U 18948227277012085227250633551784337179,1881331163508674280605070386666674939623268684

%N G.f.: A(x) = exp( Sum_{n>=1} A002203(n^2)*x^n/n ).

%C A002203 equals the logarithmic derivative of the Pell numbers (A000129).

%C Note that A002203(n^2) = (1+sqrt(2))^(n^2) + (1-sqrt(2))^(n^2).

%C Given g.f. A(x), (1-x)^(1/4) * A(x)^(1/8) is an integer series.

%F Logarithmic derivative equals A165938.

%F Self-convolution of A166879.

%e G.f.: A(x) = 1 + 2*x + 19*x^2 + 964*x^3 + 334965*x^4 + 742714950*x^5 +...

%e log(A(x)) = 2*x + 34*x^2/2 + 2786*x^3/3 + 1331714*x^4/4 + 3710155682*x^5/5 + 60245508192802*x^6/6 + 5701755387019728962*x^7/7 +...+ A002203(n^2)*x^n/n +...

%o (PARI) {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^(m^2))),m^2)*x^m/m)+x*O(x^(n^2))),n))}

%Y Cf. A165938, A166879, A002203, A000129; variants: A158843, A166168, A155200.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 18 2009