login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165939 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I. 1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192008963, 610878224191620, 13439320932093441, 295665060503367324, 6504631331014936812, 143101889281027434912 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The initial terms coincide with those of A170742, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..500

Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,-231).

FORMULA

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).

MAPLE

seq(coeff(series((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 25 2019

MATHEMATICA

CoefficientList[Series[(1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 18 2016 *)

coxG[{10, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 25 2019 *)

PROG

(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11)) \\ G. C. Greubel, Sep 25 2019

(MAGMA) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11) )); // G. C. Greubel, Sep 25 2019

(Sage)

def A165939_list(prec):

    P.<t> = PowerSeriesRing(ZZ, prec)

    return P((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11)).list()

A165939_list(30) # G. C. Greubel, Sep 25 2019

(GAP) a:=[23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192008963];; for n in [11..30] do a[n]:=21*Sum([1..9], j-> a[n-j]) -231*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 25 2019

CROSSREFS

Sequence in context: A164636 A164957 A165365 * A166417 A166610 A167076

Adjacent sequences:  A165936 A165937 A165938 * A165940 A165941 A165942

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 17:03 EST 2019. Contains 330000 sequences. (Running on oeis4.)