login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306065
E.g.f. A(x) satisfies: Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n+1-k) - (k+1)*A(x) = 0.
2
1, 1, 2, 9, 60, 545, 6240, 86499, 1407840, 26328105, 556338240, 13110436845, 340916083200, 9696978168657, 299505048041472, 9982704111951375, 357144207270359040, 13651153329833408145, 555203925284795043840, 23940076477993593415857, 1090918710974007336960000, 52384418915257291697680545
OFFSET
0,3
COMMENTS
a(n) = (-1)^(n+1) * A306066(n+1)/(n+1) for n >= 0.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..133 (terms 0..100 from Paul D. Hanna)
FORMULA
E.g.f. A(x) satisfies:
(1) Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n+1-k) - (k+1)*A(x) = 0.
(2) Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n+1-k - m) - (k+1)*A(x) = -m * A(x)^(2*m-2) * x^(m-2) / (A(x) - 1)^(m-2).
(3) Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n+1-k) - (k+1 - p)*A(x) = p/A(x) * x^(p-2) / (A(x) - 1)^(p-2).
(4) Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n+1-k - m) - (k+1 - p)*A(x) = -(m -p*A(x)) * A(x)^(2*m-2) * x^(m+p-2) / (A(x) - 1)^(m+p-2).
(5) A(x) = 1 / A(-x*A(x)).
(6) Sum_{n>=0} (-x)^n/n! * Product_{k=1..n} (n-k) - k*A(x) = A(x).
(7) Sum_{n>=0} (-x)^n/n! * Product_{k=1..n} (n-k+1) - (k-1)*A(x) = 1/A(x).
(8) Sum_{n>=0} (-x/2)^n/n! * Product_{k=1..n} (2*(n-k)+1) - (2*k-1)*A(x) = 1.
(9) Sum_{n>=0} (-x/2)^n/n! * Product_{k=1..n} (2*(n-k)+1 - m) - (2*k-1)*A(x) = A(x)^( m/(1 + A(x)) ).
(10) Sum_{n>=0} (-x/2)^n/n! * Product_{k=1..n} (2*(n-k)+1) - (2*k-1 - p)*A(x) = A(x)^( -p*A(x)/(1 + A(x)) ).
(11) Sum_{n>=0} (-x/2)^n/n! * Product_{k=1..n} (2*(n-k)+1 - m) - (2*k-1 - p)*A(x) = A(x)^( (m - p*A(x))/(1 + A(x)) ).
a(n)/n! ~ c * d^n / n^(3/2), where d = 2.4559812888215554548... and c = 0.65281176845553367... - Vaclav Kotesovec, Jul 12 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 60*x^4/4! + 545*x^5/5! + 6240*x^6/6! + 86499*x^7/7! + 1407840*x^8/8! + 26328105*x^9/9! + 556338240*x^10/10! + ...
such that
0 = (1 - A(x)) - (2 - A(x))*(1 - 2*A(x))*x/1! + (3 - A(x))*(2 - 2*A(x))*(1 - 3*A(x))*x^2/2! - (4 - A(x))*(3 - 2*A(x))*(2 - 3*A(x))*(1 - 4*A(x))*x^3/3! + (5 - A(x))*(4 - 2*A(x))*(3 - 3*A(x))*(2 - 4*A(x))*(1 - 5*A(x))*x^4/4! + ...
Also,
1 = 1 - (1 - A(x))*x/(1!*2) + (3 - A(x))*(1 - 3*A(x))*x^2/(2!*2^2) - (5 - A(x))*(3 - 3*A(x))*(1 - 5*A(x))*x^3/(3!*2^3) + (7 - A(x))*(5 - 3*A(x))*(3 - 5*A(x))*(1 - 7*A(x))*x^4/(4!*2^4) - (9 - A(x))*(7 - 3*A(x))*(5 - 5*A(x))*(3 - 7*A(x))*(1 - 9*A(x))*x^5/(5!*2^5) + ...
More generally, the e.g.f. A(x) satisfies the following sums.
Define
S1(m,p) = Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n+1-k - m) - (k+1 - p)*A(x),
then
S1(m,p) = -(m - p*A(x)) * A(x)^(2*m-2) * x^(m+p-2) / (A(x) - 1)^(m+p-2).
Define
S2(m,p) = Sum_{n>=0} (-x/2)^n/n! * Product_{k=1..n} (2*(n-k)+1 - m) - (2*k-1 - p)*A(x),
then
S2(m,p) = A(x)^( (m - p*A(x))/(1 + A(x)) ).
RELATED SERIES.
The e.g.f. also satisfies A(x) = 1/A(-x*A(x)), where:
A(-x*A(x)) = 1/A(x) = 1 - x - 3*x^3/3! - 12*x^4/4! - 125*x^5/5! - 1320*x^6/6! - 18249*x^7/7! - 290976*x^8/8! - 5385393*x^9/9! - 112642560*x^10/10! + ...
Also,
(A(x) - 1)/x = 1 + x + 3*x^2/2! + 15*x^3/3! + 109*x^4/4! + 1040*x^5/5! + 12357*x^6/6! + 175980*x^7/7! + 2925345*x^8/8! + 55633824*x^9/9! + 1191857895*x^10/10! + 28409673600*x^11/11! + 745921397589*x^12/12! + ...
appears commonly in formulas for e.g.f. A(x).
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, (-x)^m/m!*prod(k=0, m, (m+1-k) - (k+1)*Ser(A) ) ), #A-1)); n!*A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2018
STATUS
approved