login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306062
O.g.f. A(x) satisfies: Sum_{n>=0} log( (1 + 2^n*x) / A(x) )^n / n! = 1.
3
1, 2, 2, 24, 1096, 149632, 62966568, 85329761952, 386069877057040, 6001439689098721408, 327962184329946415530336, 64150844215771337825753078272, 45547009330254120256598494596400320, 118653960132660605481807477808249363616768, 1143717244821821894255831791273094878164139953920, 41063965948289078797110473909472925848872401288025550336
OFFSET
0,2
EXAMPLE
O.g.f. A(x) = 1 + 2*x + 2*x^2 + 24*x^3 + 1096*x^4 + 149632*x^5 + 62966568*x^6 + 85329761952*x^7 + 386069877057040*x^8 + 6001439689098721408*x^9 + ...
such that Sum_{n>=0} log( (1 + 2^n*x) / A(x) )^n / n! = 1.
RELATED SERIES.
log(A(x)) = 2*x + 68*x^3/3 + 4200*x^4/4 + 737432*x^5/5 + 376015248*x^6/6 + 596428719840*x^7/7 + 3087194714985696*x^8/8 + ... + A306061(n)*x^n/n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, log( (1+2^m*x +x*O(x^#A)) / Ser(A) )^m/m! ) )[#A] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A356908 A032336 A032084 * A195967 A301602 A354898
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 19 2018
STATUS
approved