OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..350
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} 2^k * (-k+1)^(k-1) * |Stirling1(n,k)|.
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (-2 * log(1-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(-2 * log(1-x)) ).
E.g.f.: A(x) = -2 * log(1-x)/LambertW(-2 * log(1-x)).
MAPLE
S:= series(exp( LambertW(-2 * log(1-x))), x, 51):
seq(n!*coeff(S, x, n), n=0..50); # Robert Israel, Sep 18 2022
MATHEMATICA
nmax = 20; A[_] = 1;
Do[A[x_] = (1/(1-x)^2)^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, 2^k*(-k+1)^(k-1)*abs(stirling(n, k, 1)));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-2*log(1-x))^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-2*log(1-x)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-2*log(1-x)/lambertw(-2*log(1-x))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 03 2022
STATUS
approved