login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356908
E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^2.
4
1, 2, -2, 24, -272, 4840, -107496, 2934400, -94501760, 3511914624, -147882696960, 6959217277056, -361941871760256, 20616017227643136, -1276341094954066176, 85337532623368181760, -6128269375791673718784, 470426144496265208979456
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} 2^k * (-k+1)^(k-1) * |Stirling1(n,k)|.
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (-2 * log(1-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(-2 * log(1-x)) ).
E.g.f.: A(x) = -2 * log(1-x)/LambertW(-2 * log(1-x)).
MAPLE
S:= series(exp( LambertW(-2 * log(1-x))), x, 51):
seq(n!*coeff(S, x, n), n=0..50); # Robert Israel, Sep 18 2022
MATHEMATICA
nmax = 20; A[_] = 1;
Do[A[x_] = (1/(1-x)^2)^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, 2^k*(-k+1)^(k-1)*abs(stirling(n, k, 1)));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-2*log(1-x))^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-2*log(1-x)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-2*log(1-x)/lambertw(-2*log(1-x))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 03 2022
STATUS
approved