login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306061
L.g.f. A(x) satisfies: Sum_{n>=0} (log(1 + 2^n*x) - A(x))^n / n! = 1, where A(x) = Sum_{n>=1} a(n)*x^n/n.
2
2, 0, 68, 4200, 737432, 376015248, 596428719840, 3087194714985696, 54006009465104195072, 3279501822205862690687680, 705652071337358165341710594240, 546562572350657623752732853465340160, 1542500297504013104202649292306514734730496, 16012038105195898099786632602589693961733953444608, 615959454912822396904406370593148614749014922437494816768
OFFSET
1,1
EXAMPLE
L.g.f. A(x) = 2*x + 68*x^3/3 + 4200*x^4/4 + 737432*x^5/5 + 376015248*x^6/6 + 596428719840*x^7/7 + 3087194714985696*x^8/8 + 54006009465104195072*x^9/9 + ...
such that Sum_{n>=0} (log(1 + 2^n*x) - A(x))^n / n! = 1.
RELATED SERIES.
exp(A(x)) = 1 + 2*x + 2*x^2 + 24*x^3 + 1096*x^4 + 149632*x^5 + 62966568*x^6 + 85329761952*x^7 + 386069877057040*x^8 + 6001439689098721408*x^9 + 327962184329946415530336*x^10 + ... + A306062(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[2]); for(i=1, n, A=concat(A, 0); A[#A] = Vec(sum(n=0, #A+1, (log(1 + 2^n*x +x*O(x^#A) ) - x*Ser(A))^n/n! ))[#A+1]); n*A[n]}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Cf. A306062.
Sequence in context: A140800 A012694 A264437 * A195209 A098276 A335692
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 18 2018
STATUS
approved