login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306068
G.f. A(x) satisfies: Sum_{n>=0} Product_{k=1..n} x^(n+1-k) + A(x)^k = 1.
1
-1, 1, -1, -1, 5, -8, -1, 30, -54, -5, 179, -178, -608, 1518, 2611, -18198, 24294, 73472, -365936, 454378, 1238770, -6059472, 7396293, 18989602, -90050185, 97765822, 309199646, -1270466588, 950395782, 5591065880, -17812121981, 3192879156, 107153213918, -255721287314, -142492705829, 2046576827997, -3763046892266, -5107717145521, 37668440369581, -55097197661332, -122428866718927
OFFSET
1,5
LINKS
FORMULA
G.f. A(x) satisfies: A(A(x)) = x.
EXAMPLE
G.f.: A(x) = -x + x^2 - x^3 - x^4 + 5*x^5 - 8*x^6 - x^7 + 30*x^8 - 54*x^9 - 5*x^10 + 179*x^11 - 178*x^12 - 608*x^13 + 1518*x^14 + 2611*x^15 - 18198*x^16 + ...
such that
1 = 1 + (x + A(x)) + (x + A(x)^2)*(x^2 + A(x)) + (x + A(x)^3)*(x^2 + A(x)^2)*(x^3 + A(x)) + (x + A(x)^4)*(x^2 + A(x)^3)*(x^3 + A(x)^2)*(x^4 + A(x)) + (x + A(x)^5)*(x^2 + A(x)^4)*(x^3 + A(x)^3)*(x^4 + A(x)^2)*(x^5 + A(x)) + ...
also, A(A(x)) = x.
PROG
(PARI) {a(n) = my(A=[-1]); for(i=1, n, A = concat(A, 0); A[#A] = -Vec( sum(n=0, #A, prod(k=1, n, x^(n+1-k) + (x*Ser(A))^k ) ) )[#A+1] ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A316229 A235936 A260781 * A021949 A363540 A076788
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 23 2018
STATUS
approved