login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120013
Square table, read by antidiagonals, of coefficients of x^k in the n-th self-composition of the g.f. of A120009, so that: T(n,k) = [x^k] { (x-x^2) o x/(1-n*x) o (1-sqrt(1-4*x))/2 } for n>=1, k>=1.
2
1, 1, 1, 1, 2, 1, 1, 3, 4, 0, 1, 4, 9, 6, -6, 1, 5, 16, 24, -4, -33, 1, 6, 25, 60, 42, -100, -143, 1, 7, 36, 120, 192, -87, -664, -572, 1, 8, 49, 210, 530, 360, -1575, -3514, -2210, 1, 9, 64, 336, 1164, 1955, -1568, -12240, -16916, -8398, 1, 10, 81, 504, 2226, 5892, 3785, -26804, -77730, -77388, -31654
OFFSET
1,5
FORMULA
T(n,k) = Sum_{j=1..k} n^(j-2)*(n-j+1)*j*(2*k-j-1)!/(k-j)!/k! - Paul D. Hanna and Max Alekseyev. Alternate formula: T(n,k) = n^(k-1) - Sum_{j=2..k-2} n^(j-1)*j*(j-1)*(k-j-1)*(2*k-j-2)!/(k-j)!/k!. These formulas also apply to non-integer n.
EXAMPLE
Square table begins:
1, 1, 1, 0, -6, -33, -143, -572, -2210, -8398, ...
1, 2, 4, 6, -4, -100, -664, -3514, -16916, -77388, ...
1, 3, 9, 24, 42, -87, -1575, -12240, -77730, -449994, ...
1, 4, 16, 60, 192, 360, -1568, -26804, -240800, -1804456, ...
1, 5, 25, 120, 530, 1955, 3785, -28900, -508610, -5227110, ...
1, 6, 36, 210, 1164, 5892, 24552, 48258, -577380, -10814388, ...
1, 7, 49, 336, 2226, 13965, 79681, 370216, 733054, -12716578, ...
1, 8, 64, 504, 3872, 28688, 200960, 1276760, 6548320, 13015536, ...
1, 9, 81, 720, 6282, 53415, 437697, 3387636, 23729310, 133234434, ...
1, 10, 100, 990, 9660, 92460, 862120, 7743550, 65644780, 502780580,...
Successive self-compositions of F(x), the g.f. of A120009, start:
F(x) = x + x^2 + x^3 - 6x^5 - 33x^6 - 143x^7 - 572x^8 - 2210x^9 +...
F(F(x)) = x + 2x^2 + 4x^3 + 6x^4 - 4x^5 - 100x^6 - 664x^7 +...
F(F(F(x))) = x + 3x^2 + 9x^3 + 24x^4 + 42x^5 - 87x^6 - 1575x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + 60x^4 + 192x^5 + 360x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 120x^4 + 530x^5 +1955x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 +210x^4 +1164x^5 + 5892x^6 +...
PROG
(PARI) {T(n, k)=sum(j=1, k, n^(j-2)*(n-j+1)*j*(2*k-j-1)!/(k-j)!/k!)}
CROSSREFS
Rows: A120009, A127275, A120012; Diagonals: A120014, A120015.
Sequence in context: A242884 A197219 A300508 * A377155 A344180 A151847
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Jun 10 2006
STATUS
approved