login
A344180
Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 0, where f(n) = 0 if n is a Fibbinary number (A003714), otherwise f(n) = n.
1
1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 1, 5, 6, 7, 8, 9, 1, 1, 1, 10, 1, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 1, 1, 21, 1, 1, 22, 23, 1, 1, 1, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 1, 1, 1, 45, 1, 1, 46, 47, 1, 1, 1, 48, 49, 50, 51, 52, 1, 1, 1, 53, 1, 1, 54, 55, 56, 57
OFFSET
0,4
COMMENTS
For all i, j:
a(i) = a(j) => A085357(i) = A085357(j),
a(i) = a(j) => A213370(i) = A213370(j),
a(i) = a(j) => A344182(i) = A344182(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
Aux344180(n) = if(!bitand(n, n+n), 0, n);
v344180 = rgs_transform(vector(1+up_to, n, Aux344180(n-1)));
A344180(n) = v344180[1+n];
CROSSREFS
Cf. A003714 (positions of 1's), A085357, A213370, A344182.
Cf. also A324400.
Sequence in context: A300508 A120013 A377155 * A151847 A349593 A179743
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 16 2021
STATUS
approved