login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344178
Difference between the arithmetic derivative of n and the cototient of n: a(n) = A003415(n) - A051953(n).
2
0, 0, 0, 2, 0, 1, 0, 8, 3, 1, 0, 8, 0, 1, 1, 24, 0, 9, 0, 12, 1, 1, 0, 28, 5, 1, 18, 16, 0, 9, 0, 64, 1, 1, 1, 36, 0, 1, 1, 44, 0, 11, 0, 24, 18, 1, 0, 80, 7, 15, 1, 28, 0, 45, 1, 60, 1, 1, 0, 48, 0, 1, 24, 160, 1, 15, 0, 36, 1, 13, 0, 108, 0, 1, 20, 40, 1, 17, 0, 128, 81, 1, 0, 64, 1, 1, 1, 92, 0, 57, 1, 48, 1, 1, 1, 208
OFFSET
1,4
COMMENTS
Question: Are all terms nonnegative? See also A211991 and A344584.
From Bernard Schott, May 25 2021: (Start)
Answer: Yes, can be proved when n = Product_{i=1..k} p_i^e_i with n' = n * Sum_{i=1..k} (e_i/p_i) and cototient(n) = n * (1 - Product_{i=1..k} (1 - 1/p_i)).
a(n) = 0 iff n is in A008578 (1 together with the primes).
a(n) = 1 iff n is in A006881 (squarefree semiprimes) (End).
FORMULA
a(n) = A003415(n) - A051953(n) = A168036(n) + A000010(n).
MATHEMATICA
Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] - # + EulerPhi[#] &, 96] (* Michael De Vlieger, May 24 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A344178(n) = A003415(n) - (n-eulerphi(n));
CROSSREFS
Cf. A000010, A003415, A051953, A168036, A344584 (inverse Möbius transform).
Cf. also A211991.
Sequence in context: A185415 A049218 A212358 * A357078 A154469 A344584
KEYWORD
nonn,changed
AUTHOR
Antti Karttunen, May 23 2021
STATUS
approved