login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322943
a(n) = n! [x^n] -exp(-1/(3*(x - 1)^3) - 1/3)/(x - 1).
1
1, 2, 9, 60, 513, 5286, 63417, 865824, 13229505, 223336458, 4123226601, 82559530692, 1780580892609, 41125146159150, 1012187976013593, 26434618529133096, 729843662368002177, 21233024209964157714, 649022529915336217545, 20789723945673232443468, 696253958136289126229121
OFFSET
0,2
FORMULA
a(n) = (4*n - 2)*a(n-1) - 3*(n - 1)*(2*n - 3)*a(n-2) + (n - 1)*(n - 2)*(4*n - 9)*a(n-3) - (n - 2)*(n - 1)*(n - 3)^2*a(n-4) for n >= 4.
a(n) ~ exp(-1/4 + 5*n^(1/4)/24 + sqrt(n)/2 + 4*n^(3/4)/3 - n) * n^(n + 1/8) / 2 * (1 + 1357/(2560*n^(1/4))). - Vaclav Kotesovec, Jan 02 2019
MAPLE
a := proc(n) option remember; local e, b, c, d;
e := n -> 4*n-2; b := n -> 3*(n-1)*(2*n-3);
c := n -> (n-1)*(n-2)*(4*n-9); d := n -> (n-2)*(n-1)*(n-3)^2;
if n < 4 then return [1, 2, 9, 60][n+1] fi;
e(n)*a(n-1) - b(n)*a(n-2) + c(n)*a(n-3) - d(n)*a(n-4) end:
seq(a(n), n=0..20);
PROG
(Sage) # uses[riordan_square from A321620]
R = riordan_square((1 - 3*x)^(-1/3), 24, True).inverse()
[sum([(-1)^(n-k)*c for k, c in enumerate(R.row(n))]) for n in (0..23)]
CROSSREFS
Row sums of A322944.
Sequence in context: A120970 A339360 A111558 * A168449 A001193 A161391
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 02 2019
STATUS
approved