login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321965
a(n) = n! [x^n] exp((1/(x - 1)^2 - 1)/2)/(1 - x).
2
1, 2, 8, 46, 338, 2996, 30952, 364148, 4797116, 69854968, 1113018176, 19244304872, 358608737368, 7160626365296, 152458303437728, 3446434090192816, 82412163484132112, 2077739630757428768, 55068742629150564736, 1530394053934299827168, 44490672191650220419616
OFFSET
0,2
FORMULA
a(n + 3) = (n + 1)^2*(n + 2)*a(n) - (5 + 3*n)*(n + 2)*a(n + 1) + (8 + 3*n)*a(n + 2). - Robert Israel, Dec 20 2018
a(n) ~ exp(-1/3 + n^(1/3)/2 + 3*n^(2/3)/2 - n) * n^(n + 1/6) / sqrt(3). - Vaclav Kotesovec, Dec 20 2018
MAPLE
egf := exp((1/(x - 1)^2 - 1)/2)/(1 - x): ser := series(egf, x, 22):
seq(n!*coeff(ser, x, n), n=0..20);
MATHEMATICA
CoefficientList[Exp[(1/(x - 1)^2 - 1)/2]/(1 - x) + O[x]^21, x] Range[0, 20]! (* Jean-François Alcover, Jan 01 2019 *)
CROSSREFS
Row sums of A321966.
Sequence in context: A219358 A088791 A111552 * A229559 A128085 A052801
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 20 2018
STATUS
approved