login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321966
Triangle read by rows, coefficients of a family of orthogonal polynomials, T(n, k) for 0 <= k <= n.
3
1, 1, 1, 2, 5, 1, 6, 27, 12, 1, 24, 168, 123, 22, 1, 120, 1200, 1275, 365, 35, 1, 720, 9720, 13950, 5655, 855, 51, 1, 5040, 88200, 163170, 87465, 18480, 1722, 70, 1, 40320, 887040, 2046240, 1387680, 383145, 49476, 3122, 92, 1
OFFSET
0,4
COMMENTS
The polynomials represent a family of orthogonal polynomials which obey a recurrence of the form p(n, x) = (x + alpha(n))*p(n-1, x) - beta(n)*p(n-2, x) + gamma(n)*p(n-3, x). For the details see the Maple program.
We conjecture that the polynomials have only negative and simple real roots.
From Giuliano Cabrele, Sep 09 2021: (Start)
Let He(n,x) define the probabilist's version of Hermite polynomials.
Then the terms of the triangle appear to be the connection coefficients in
x^n*He(n,x) = Sum_{k=0..n} T(n,k)*He(2k,x).
These are generated by the explicit formula
T(n,m) = 2^(n-m)*Sum_{j=0..floor(n/2)} C(n,2*j)*C(2*n-2*j,2*m)*Gamma(1/2 + n - m - j)/Gamma(1/2 - j).
A formal proof that they correspond to the original definition is needed. (End)
FORMULA
Let R be the inverse of the Riordan square [see A321620] of (1 - 2*x)^(-1/2) then T(n, k) = (-1)^(n-k)*R(n, k).
EXAMPLE
p(0,x) = 1;
p(1,x) = x + 1;
p(2,x) = x^2 + 5*x + 2;
p(3,x) = x^3 + 12*x^2 + 27*x + 6;
p(4,x) = x^4 + 22*x^3 + 123*x^2 + 168*x + 24;
p(5,x) = x^5 + 35*x^4 + 365*x^3 + 1275*x^2 + 1200*x + 120;
p(6,x) = x^6 + 51*x^5 + 855*x^4 + 5655*x^3 + 13950*x^2 + 9720*x + 720;
MAPLE
P := proc(n) option remember; local a, b, c;
a := n -> 3*n-2; b := n -> (n-1)*(3*n-4); c := n -> (n-2)^2*(n-1);
if n = 0 then return 1 fi;
if n = 1 then return x + 1 fi;
if n = 2 then return x^2 + 5*x + 2 fi;
expand((x+a(n))*P(n-1) - b(n)*P(n-2) + c(n)*P(n-3)) end:
seq(print(P(n)), n=0..6); # Computes the polynomials.
MATHEMATICA
a[n_] := 3n-2; b[n_] := (n-1)(3n-4); c[n_] := (n-2)^2 (n-1);
P[n_] := P[n] = Switch[n, 0, 1, 1, x+1, 2, x^2 + 5x + 2, _, Expand[(x+a[n]) P[n-1] - b[n] P[n-2] + c[n] P[n-3]]];
Table[CoefficientList[P[n], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 01 2019, from Maple *)
PROG
(Sage) # uses[RiordanSquare from A321620]
R = RiordanSquare((1 - 2*x)^(-1/2), 9, True).inverse()
for n in (0..8): print([(-1)^(n-k)*c for (k, c) in enumerate(R.row(n)[:n+1])])
CROSSREFS
p(n, 1) = A321965(n); p(n, 0) = n! = A000142(n).
Cf. A321620.
Sequence in context: A174232 A065224 A325137 * A304822 A165278 A334379
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 20 2018
STATUS
approved