login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325137
Triangle T(n, k) = [x^n] (n + k + x)!/(k + x)! for 0 <= k <= n, read by rows.
2
1, 1, 1, 2, 5, 1, 6, 26, 12, 1, 24, 154, 119, 22, 1, 120, 1044, 1175, 355, 35, 1, 720, 8028, 12154, 5265, 835, 51, 1, 5040, 69264, 133938, 77224, 17360, 1687, 70, 1, 40320, 663696, 1580508, 1155420, 342769, 46816, 3066, 92, 1
OFFSET
0,4
COMMENTS
Sister triangle of A307419.
FORMULA
T(n, k) = Sum_{j=0..n-k} binomial(j+k, k)*|Stirling1(n, j+k)|*(k+1)^j.
EXAMPLE
Triangle starts:
[0] 1
[1] 1, 1
[2] 2, 5, 1
[3] 6, 26, 12, 1
[4] 24, 154, 119, 22, 1
[5] 120, 1044, 1175, 355, 35, 1
[6] 720, 8028, 12154, 5265, 835, 51, 1
[7] 5040, 69264, 133938, 77224, 17360, 1687, 70, 1
[8] 40320, 663696, 1580508, 1155420, 342769, 46816, 3066, 92, 1
[9] 362880, 6999840, 19978308, 17893196, 6687009, 1197273, 109494, 5154, 117, 1
MAPLE
T := (n, k) -> add(binomial(j+k, k)*(k+1)^j*abs(Stirling1(n, j+k)), j=0..n-k);
seq(seq(T(n, k), k=0..n), n=0..8);
# Note that for n > 16 Maple fails (at least in some versions) to compute the
# terms properly. Inserting 'simplify' or numerical evaluation might help.
A325137Row := proc(n) local ogf, ser; ogf := (n, k) -> (n+k+x)!/(k+x)!;
ser := (n, k) -> series(ogf(n, k), x, k+2); seq(coeff(ser(n, k), x, k), k=0..n) end: seq(A325137Row(n), n=0..8);
CROSSREFS
Row sums: A325138.
Cf. A307419.
Sequence in context: A084245 A174232 A065224 * A321966 A304822 A165278
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 13 2019
STATUS
approved