login
A325137
Triangle T(n, k) = [x^n] (n + k + x)!/(k + x)! for 0 <= k <= n, read by rows.
2
1, 1, 1, 2, 5, 1, 6, 26, 12, 1, 24, 154, 119, 22, 1, 120, 1044, 1175, 355, 35, 1, 720, 8028, 12154, 5265, 835, 51, 1, 5040, 69264, 133938, 77224, 17360, 1687, 70, 1, 40320, 663696, 1580508, 1155420, 342769, 46816, 3066, 92, 1
OFFSET
0,4
COMMENTS
Sister triangle of A307419.
FORMULA
T(n, k) = Sum_{j=0..n-k} binomial(j+k, k)*|Stirling1(n, j+k)|*(k+1)^j.
EXAMPLE
Triangle starts:
[0] 1
[1] 1, 1
[2] 2, 5, 1
[3] 6, 26, 12, 1
[4] 24, 154, 119, 22, 1
[5] 120, 1044, 1175, 355, 35, 1
[6] 720, 8028, 12154, 5265, 835, 51, 1
[7] 5040, 69264, 133938, 77224, 17360, 1687, 70, 1
[8] 40320, 663696, 1580508, 1155420, 342769, 46816, 3066, 92, 1
[9] 362880, 6999840, 19978308, 17893196, 6687009, 1197273, 109494, 5154, 117, 1
MAPLE
T := (n, k) -> add(binomial(j+k, k)*(k+1)^j*abs(Stirling1(n, j+k)), j=0..n-k);
seq(seq(T(n, k), k=0..n), n=0..8);
# Note that for n > 16 Maple fails (at least in some versions) to compute the
# terms properly. Inserting 'simplify' or numerical evaluation might help.
A325137Row := proc(n) local ogf, ser; ogf := (n, k) -> (n+k+x)!/(k+x)!;
ser := (n, k) -> series(ogf(n, k), x, k+2); seq(coeff(ser(n, k), x, k), k=0..n) end: seq(A325137Row(n), n=0..8);
CROSSREFS
Row sums: A325138.
Cf. A307419.
Sequence in context: A084245 A174232 A065224 * A321966 A304822 A165278
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 13 2019
STATUS
approved