login
A325139
Triangle T(n, k) = [t^n] Gamma(n + k + m + t)/Gamma(k + m + t) for m = 2 and 0 <= k <= n, read by rows.
1
1, 2, 1, 6, 7, 1, 24, 47, 15, 1, 120, 342, 179, 26, 1, 720, 2754, 2070, 485, 40, 1, 5040, 24552, 24574, 8175, 1075, 57, 1, 40320, 241128, 305956, 134449, 24885, 2086, 77, 1, 362880, 2592720, 4028156, 2231012, 541849, 63504, 3682, 100, 1
OFFSET
0,2
FORMULA
T(n, k) = Sum_{j=0..n-k} binomial(j+k, k)*abs(Stirling1(n, j+k))*(k+2)^j.
EXAMPLE
0: 1;
1: 2, 1;
2: 6, 7, 1;
3: 24, 47, 15, 1;
4: 120, 342, 179, 26, 1;
5: 720, 2754, 2070, 485, 40, 1;
6: 5040, 24552, 24574, 8175, 1075, 57, 1;
7: 40320, 241128, 305956, 134449, 24885, 2086, 77, 1;
8: 362880, 2592720, 4028156, 2231012, 541849, 63504, 3682, 100, 1;
9: 3628800, 30334320, 56231712, 37972304, 11563650, 1768809, 142632, 6054, 126, 1;
MAPLE
T := (n, k) -> add(binomial(j+k, k)*(k+2)^j*abs(Stirling1(n, j+k)), j=0..n-k):
seq(seq(T(n, k), k=0..n), n=0..8);
# Note that for n > 16 Maple fails (at least in some versions) to compute the
# terms properly. Inserting 'simplify' or numerical evaluation might help.
A325139Row := proc(n) local ogf, ser; ogf := (n, k) -> GAMMA(n+k+2+x)/GAMMA(k+2+x);
ser := (n, k) -> series(ogf(n, k), x, k+2); seq(coeff(ser(n, k), x, k), k=0..n) end:
seq(A325139Row(n), n=0..9);
CROSSREFS
Row sums are A325140.
Columns are: A000142, A001711, A001717, A001723.
Family: A307419 (m=0), A325137 (m=1), this sequence (m=2).
Sequence in context: A345323 A052636 A172430 * A084312 A066752 A192329
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 15 2019
STATUS
approved