OFFSET
0,2
FORMULA
T(n, k) = Sum_{j=0..n-k} binomial(j+k, k)*abs(Stirling1(n, j+k))*(k+2)^j.
EXAMPLE
0: 1;
1: 2, 1;
2: 6, 7, 1;
3: 24, 47, 15, 1;
4: 120, 342, 179, 26, 1;
5: 720, 2754, 2070, 485, 40, 1;
6: 5040, 24552, 24574, 8175, 1075, 57, 1;
7: 40320, 241128, 305956, 134449, 24885, 2086, 77, 1;
8: 362880, 2592720, 4028156, 2231012, 541849, 63504, 3682, 100, 1;
9: 3628800, 30334320, 56231712, 37972304, 11563650, 1768809, 142632, 6054, 126, 1;
MAPLE
T := (n, k) -> add(binomial(j+k, k)*(k+2)^j*abs(Stirling1(n, j+k)), j=0..n-k):
seq(seq(T(n, k), k=0..n), n=0..8);
# Note that for n > 16 Maple fails (at least in some versions) to compute the
# terms properly. Inserting 'simplify' or numerical evaluation might help.
A325139Row := proc(n) local ogf, ser; ogf := (n, k) -> GAMMA(n+k+2+x)/GAMMA(k+2+x);
ser := (n, k) -> series(ogf(n, k), x, k+2); seq(coeff(ser(n, k), x, k), k=0..n) end:
seq(A325139Row(n), n=0..9);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 15 2019
STATUS
approved