OFFSET
0,4
COMMENTS
The polynomials represent a family of orthogonal polynomials which obey a recurrence of the form p(n, x) = (x+r(n))*p(n-1, x) - s(n)*p(n-2, x) + t(n)*p(n-3, x) - u(n)*p(n-4, x). For the details see the Maple program.
We conjecture that the polynomials have only negative and simple real roots.
LINKS
Peter Luschny, Plot of the polynomials.
FORMULA
Let R be the inverse of the Riordan square [see A321620] of (1 - 3*x)^(-1/3) then T(n, k) = (-1)^(n-k)*R(n, k).
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 2, 6, 1;
[3] 6, 38, 15, 1;
[4] 24, 272, 188, 28, 1;
[5] 120, 2200, 2340, 580, 45, 1;
[6] 720, 19920, 30280, 11040, 1390, 66, 1;
[7] 5040, 199920, 413560, 206920, 37450, 2842, 91, 1;
Production matrix starts:
1;
1, 1;
3, 5, 1;
6, 18, 9, 1;
6, 42, 45, 13, 1;
0, 48, 132, 84, 17, 1;
0, 0, 180, 300, 135, 21, 1;
0, 0, 0, 480, 570, 198, 25, 1;
MAPLE
P := proc(n) option remember; local a, b, c, d;
a := n -> 4*n-3; b := n -> 3*(n-1)*(2*n-3);
c := n -> (n-1)*(n-2)*(4*n-9); d := n -> (n-2)*(n-1)*(n-3)^2;
if n = 0 then return 1 fi;
if n = 1 then return x + 1 fi;
if n = 2 then return x^2 + 6*x + 2 fi;
if n = 3 then return x^3 + 15*x^2 + 38*x + 6 fi;
expand((x+a(n))*P(n-1) - b(n)*P(n-2) + c(n)*P(n-3) - d(n)*P(n-4)) end:
seq(print(P(n)), n=0..9); # Computes the polynomials.
MATHEMATICA
a[n_] := 4n - 3;
b[n_] := 3(n - 1)(2n - 3);
c[n_] := (n - 1)(n - 2)(4n - 9);
d[n_] := (n - 2)(n - 1)(n - 3)^2;
P[n_] := P[n] = Switch[n, 0, 1, 1, x + 1, 2, x^2 + 6x + 2, 3, x^3 + 15x^2 + 38x + 6, _, Expand[(x + a[n]) P[n - 1] - b[n] P[n - 2] + c[n] P[n - 3] - d[n] P[n - 4]]];
Table[CoefficientList[P[n], x], {n, 0, 9}] (* Jean-François Alcover, Jun 15 2019, from Maple *)
PROG
(Sage) # uses[riordan_square from A321620]
R = riordan_square((1 - 3*x)^(-1/3), 9, True).inverse()
for n in (0..8): print([(-1)^(n-k)*c for (k, c) in enumerate(R.row(n)[:n+1])])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 02 2019
STATUS
approved