login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059366
Triangle T(m,s), m >= 0, 0 <= s <= m, arising in the computation of certain integrals.
6
1, 1, 1, 3, 2, 3, 15, 9, 9, 15, 105, 60, 54, 60, 105, 945, 525, 450, 450, 525, 945, 10395, 5670, 4725, 4500, 4725, 5670, 10395, 135135, 72765, 59535, 55125, 55125, 59535, 72765, 135135, 2027025, 1081080, 873180, 793800, 771750, 793800, 873180
OFFSET
0,4
COMMENTS
From Petros Hadjicostas, May 12 2020: (Start)
Following Comtet (1974, pp. 166-167), let J(m) = Integral_{t = 0..Pi/2} (A^2*cos^2(t) + B^2*sin^2(t))^(-m)) dt for m >= 0. Then J(m+1) = (Pi/(2^(m+1)*A*B*m!)) * Sum_{s=0..m} T(m,s)*A^(-2*s)*B^(-2*m+2*s).
Given m >= 0, the collection of numbers T(m,s)/A000165(m) = T(m,s)/(m!*2^m), s = 0..m, forms a discrete probability distribution on the set {0,1,...,m}, which is known as the "finite discrete arcsine distribution of order m". See Konrad (1969, Section 3.3) and Konrad (1992, Section 2.1, pp. 189-190). (End)
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 166-167; see a(m,s) (typo in a formula corrected below).
LINKS
Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87; see p. 85.
Konrad Jacobs, Das kombinatorische Äquivalenzprinzip und das arcsin-Gesetz von E. Sparre Andersen, in: K. Jacobs (eds), Selecta Mathematica I, Heidelberger Taschenbücher, vol 49, Springer, Berlin, Heidelberg, 1969, pp. 53-81; see Lemma 3.3.
Konrad Jacobs, Discrete Stochastics, Springer Basel AG, 1992; see Section 2.1.
FORMULA
T(m+2, s) = (2*m+3)*(T(m+1, s-1) + T(m+1, s)) - 4*(m+1)^2*T(m, s-1).
T(m, s) = m!*Sum_{k=0..s} (-1)^k*2^(2*k-m)*binomial(s, k)*binomial(2*m-2*k, s)*binomial(2*m-2*k-s, m-k). [Typo in Comtet (1974, p. 166) corrected by Petros Hadjicostas, May 12 2020, using Comtet (1967, p. 85).]
From Reinhard Zumkeller, Apr 10 2004: (Start)
T(n,s) = A000984(s)*A000984(n-s)*A000142(n)/A000079(n).
T(n,s) = T(n,n-s).
Sum_{s=0..n} T(n,s) = A000165(n). (End)
From Petros Hadjicostas, May 13 2020: (Start)
T(m,s) = binomial(-1/2, s) * binomial(-1/2, m-s) * (-1)^m * m! * 2^m. [See Konrad (1992, pp. 189-190).]
T(m,m) = A001147(m) = T(m,0) for m >= 0.
T(m,m-1) = A001193(m-1) = T(m,1) for m >= 1.
T(m,m-2) = A001194(m) = T(m,2) for m >= 2.
T(m,m-3) = A001756(m) = T(m,3) for m >= 3.
T(m,floor(m/2)) = A001757(m) = T(m, ceiling(m/2)) for m >= 0.
Lim_{m -> infinity} Sum_{s: s/m <= x} T(m,s)/A000165(m) = (2/Pi)*arcsin(sqrt(x)) for x in [0,1], where the summation is over those s in {0,1,...,m} that satisfy s/m <= x. (End)
From Peter Bala, Apr 14 2024: (Start)
T(m, s) = (2*s - 1)*(m - s + 1)/(s*(2*m - 2*s + 1)) * T(m, s-1) for s >= 1.
T(m, s) = Sum_{i = 0..s} (-1)^(s-i)*binomial(m-i, s-i)*A368235(m, i). (End)
EXAMPLE
Triangle T(m,s) (with rows m >= 0 and columns 0 <= s <= m) begins as follows:
1;
1, 1;
3, 2, 3;
15, 9, 9, 15;
105, 60, 54, 60, 105;
945, 525, 450, 450, 525, 945;
...
From Petros Hadjicostas, May 13 2020: (Start)
With m = 4, we have
J(4) = Integral_{t = 0..Pi/2} (A^2*cos^2(t) + B^2*sin^2(t))^(-4) dt
= Pi/(2^4*A*B*3!) * Sum_{s=0..3} T(3,s)*A^(-2*s)*B(-6+2*s)
= Pi/(96*A*B) * (15*B^(-6) + 9*A^(-2)*B^(-4) + 9*A^(-4)*B^(-2) + 15*A^(-6)). (End)
MAPLE
A059366 = proc(m, s) option remember; if s = 0 then (2*m)!/(2^m*m!) else
(2*s-1)*(m-s+1)/(s*(2*m-2*s+1)) * A059366(m, s-1) end if; end proc:
seq(print(seq(A059366(m, s), s = 0..m)), m = 0..10) ; # Peter Bala, Apr 14 2024
MATHEMATICA
Table[Binomial[2*s, s]*Binomial[2*n - 2*s, n - s]*n!/2^n, {n, 0, 10}, {s, 0, n}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
PROG
(PARI) for(n=0, 10, for(s=0, n, print1(binomial(2*s, s)*binomial(2*n - 2*s, n - s)*n!/2^n, ", "))) \\ G. C. Greubel, Jan 08 2017
(Magma) /* as triangle */ [[Binomial(2*s, s)*Binomial(2*n-2*s, n-s)*Factorial(n)/2^n: s in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 09 2017
CROSSREFS
Central diagonal gives A001757. Other diagonals and columns include A001147, A001193, A001194.
Sequence in context: A057053 A081850 A247237 * A298594 A092950 A059239
KEYWORD
tabl,nonn,easy
AUTHOR
N. J. A. Sloane, Jan 28 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001
STATUS
approved