OFFSET
3,1
COMMENTS
Previous name was: Expansion of an integral.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 166-167.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 3..100
Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87; see p. 85.
FORMULA
a(3) = 15, a(n) = a(n-1)*n*(2*n-7)/(n-3). - Philippe Deléham, Sep 19 2006
From Petros Hadjicostas, May 12 2020: (Start)
a(n) = n! * Sum_{k=0..n-3} (-1)^k * 2^(2*k-n) * binomial(n-3, k) * binomial(2*n-2*k, n-3) * binomial(n-2*k+3, n-k) for n >= 3. [Special case of a formula by Comtet, but corrected]
a(n) = 20 * binomial(2*n-6, n-3) * n!/2^n for n >= 3. [Special case of a formula due to Reinhard Zumkeller]
a(n) = binomial(-1/2, 3) * binomial(-1/2, n-3) * (-1)^n * n! * 2^n for n >= 3. (End)
a(n) ~ sqrt(2)*(5/16)*(2*n/e)^n. - Peter Luschny, May 13 2020
MATHEMATICA
RecurrenceTable[{a[3]==15, a[n]==a[n-1]n (2n-7)/(n-3)}, a, {n, 20}] (* Harvey P. Dale, Nov 08 2011 *)
Join[{c = 15}, Table[c = c*n*(2*n - 7)/(n - 3), {n, 4, 20}]] (* T. D. Noe, Aug 10 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Philippe Deléham, Sep 19 2006
Corrected and extended by Harvey P. Dale, Nov 08 2011
New name by Petros Hadjicostas, May 12 2020
STATUS
approved