login
A001756
a(n) = A059366(n,n-3) = A059366(n,3) for n >= 3, where the triangle A059366 arises from the expansion of a trigonometric integral.
(Formerly M4967 N2131)
2
15, 60, 450, 4500, 55125, 793800, 13097700, 243243000, 5016886875, 113716102500, 2808787731750, 75071235739500, 2158298027510625, 66409170077250000, 2177272076104125000, 75769068248423550000, 2789248824895091934375, 108288483790044745687500
OFFSET
3,1
COMMENTS
Previous name was: Expansion of an integral.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 166-167.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87; see p. 85.
FORMULA
a(n) = 5*A007531(n)*A001147(n-2)/(2*(2*n-5)). - Philippe Deléham, Jun 26 2006
a(3) = 15, a(n) = a(n-1)*n*(2*n-7)/(n-3). - Philippe Deléham, Sep 19 2006
From Petros Hadjicostas, May 12 2020: (Start)
a(n) = n! * Sum_{k=0..n-3} (-1)^k * 2^(2*k-n) * binomial(n-3, k) * binomial(2*n-2*k, n-3) * binomial(n-2*k+3, n-k) for n >= 3. [Special case of a formula by Comtet, but corrected]
a(n) = 20 * binomial(2*n-6, n-3) * n!/2^n for n >= 3. [Special case of a formula due to Reinhard Zumkeller]
a(n) = binomial(-1/2, 3) * binomial(-1/2, n-3) * (-1)^n * n! * 2^n for n >= 3. (End)
a(n) ~ sqrt(2)*(5/16)*(2*n/e)^n. - Peter Luschny, May 13 2020
MATHEMATICA
RecurrenceTable[{a[3]==15, a[n]==a[n-1]n (2n-7)/(n-3)}, a, {n, 20}] (* Harvey P. Dale, Nov 08 2011 *)
Join[{c = 15}, Table[c = c*n*(2*n - 7)/(n - 3), {n, 4, 20}]] (* T. D. Noe, Aug 10 2012 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Philippe Deléham, Sep 19 2006
Corrected and extended by Harvey P. Dale, Nov 08 2011
New name by Petros Hadjicostas, May 12 2020
STATUS
approved