login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206231
Number of (n+1) X 2 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.
1
15, 60, 310, 1640, 8910, 51066, 294546, 1710184, 10051522, 59273370, 350336326, 2076929912, 12328636710, 73241168202, 435453806538, 2590088923960, 15409982499130, 91703551575882, 545793722630878, 3248685323916392
OFFSET
1,1
COMMENTS
Column 1 of A206238.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) -11*a(n-2) +36*a(n-3) -303*a(n-4) +232*a(n-5) +147*a(n-6) +756*a(n-7) for n>8.
Empirical g.f.: x*(15 - 60*x - 5*x^2 - 720*x^3 + 1585*x^4 + 1366*x^5 + 2793*x^6 - 378*x^7) / ((1 - 4*x)*(1 - x - x^2 - 3*x^3)*(1 - 3*x - 7*x^2 - 63*x^3)). - Colin Barker, Jun 14 2018
EXAMPLE
Some solutions for n=4:
..0..1....0..0....0..1....0..0....0..0....0..1....0..1....0..0....0..0....0..0
..0..0....0..1....0..0....0..1....1..0....2..1....2..0....1..1....0..1....0..1
..0..1....1..2....0..1....1..0....0..1....3..1....0..0....2..1....1..2....1..2
..1..2....1..1....1..0....0..0....0..0....0..1....3..0....1..0....2..2....1..1
..1..1....0..1....0..0....2..2....0..2....3..3....2..1....0..0....1..1....0..0
CROSSREFS
Cf. A206238.
Sequence in context: A005945 A223337 A110755 * A001756 A284096 A022288
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 05 2012
STATUS
approved