login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206238
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X3 or 3X2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order
9
15, 60, 60, 310, 256, 310, 1640, 1136, 1136, 1640, 8910, 5728, 4456, 5728, 8910, 51066, 31652, 27168, 27168, 31652, 51066, 294546, 170728, 133392, 283728, 133392, 170728, 294546, 1710184, 943584, 607008, 1236432, 1236432, 607008, 943584, 1710184
OFFSET
1,1
COMMENTS
Table starts
......15......60......310......1640........8910........51066........294546
......60.....256.....1136......5728.......31652.......170728........943584
.....310....1136.....4456.....27168......133392.......607008.......3503136
....1640....5728....27168....283728.....1236432......9042600......95322432
....8910...31652...133392...1236432....10915392....118573968....1122086640
...51066..170728...607008...9042600...118573968...1448239080...22535636736
..294546..943584..3503136..95322432..1122086640..22535636736..649065145152
.1710184.5175034.17206032.419146392.10022726928.303011941944.8026428934128
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 8*a(n-1) -11*a(n-2) +36*a(n-3) -303*a(n-4) +232*a(n-5) +147*a(n-6) +756*a(n-7) for n>8
k=2: a(n) = 3*a(n-1) +20*a(n-2) -14*a(n-3) -133*a(n-4) +95*a(n-5) +123*a(n-6) +9*a(n-7) -102*a(n-8) for n>10
k=3: a(n) = a(n-1) +129*a(n-3) -129*a(n-4) for n>7
k=4: a(n) = a(n-1) +339*a(n-3) -339*a(n-4) for n>8
k=5: a(n) = a(n-1) +921*a(n-3) -921*a(n-4) for n>9
k=6: a(n) = a(n-1) +2571*a(n-3) -2571*a(n-4) for n>10
k=7: a(n) = a(n-1) +7329*a(n-3) -7329*a(n-4) for n>11
k=8: a(n) = a(n-1) +21219*a(n-3) -21219*a(n-4) for n>12
k=9: a(n) = a(n-1) +62121*a(n-3) -62121*a(n-4) for n>13
k=10: a(n) = a(n-1) +183291*a(n-3) -183291*a(n-4) for n>14
k=11: a(n) = a(n-1) +543729*a(n-3) -543729*a(n-4) for n>15
apparently a(n) = a(n-1) +3*A085279(k+1)*a(n-3) -3*A085279(k+1)*a(n-4) for k>2 and n>k+4
EXAMPLE
Some solutions for n=4 k=3
..0..0..1..0....0..0..1..1....0..0..1..1....0..1..2..0....0..0..1..1
..0..1..0..0....0..2..3..3....2..2..3..1....3..2..2..0....2..2..0..1
..2..0..0..1....2..3..3..2....1..2..2..3....2..2..1..2....3..2..2..3
..0..0..2..3....3..3..0..3....0..1..2..2....2..1..2..2....2..1..2..2
..0..1..3..3....0..0..3..3....0..0..3..2....3..2..2..3....2..2..0..2
CROSSREFS
Sequence in context: A022287 A288747 A223344 * A064761 A005945 A223337
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 05 2012
STATUS
approved