OFFSET
0,2
COMMENTS
Number of edges in a complete 6-partite graph of order 6n, K_n,n,n,n,n,n.
LINKS
FORMULA
a(n) = a(n-1) + 30*n - 15 for n>0, a(0)=0. - Vincenzo Librandi, Dec 15 2010
a(n) = t(6*n) - 6*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(6*n) - 6*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/90.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/180.
Product_{n>=1} (1 + 1/a(n)) = sqrt(15)*sinh(Pi/sqrt(15))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(15)*sin(Pi/sqrt(15))/Pi. (End)
MATHEMATICA
Table[15*n^2, {n, 0, 45}] (* Amiram Eldar, Feb 03 2021 *)
PROG
(PARI) a(n)=15*n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roberto E. Martinez II, Oct 18 2001
STATUS
approved