login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223344
T(n,k)=5X5X5 triangular graph coloring a rectangular array: number of nXk 0..14 arrays where 0..14 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 6,10 6,11 7,11 10,11 7,12 8,12 11,12 11,12 8,13 9,13 12,13 9,14 13,14 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph
8
15, 60, 60, 264, 612, 264, 1176, 6696, 6696, 1176, 5280, 74736, 190740, 74736, 5280, 23712, 840456, 5514360, 5514360, 840456, 23712, 106560, 9474840, 161370036, 419434596, 161370036, 9474840, 106560, 478848, 106904016, 4730218284
OFFSET
1,1
COMMENTS
Table starts
......15...........60..............264.................1176
......60..........612.............6696................74736
.....264.........6696...........190740..............5514360
....1176........74736..........5514360............419434596
....5280.......840456........161370036..........32292951660
...23712......9474840.......4730218284........2496237714588
..106560....106904016.....138947808456......193291992449808
..478848...1206530100....4081817304888....14976739459479096
.2151936..13618313028..119957730775764..1160751100183303776
.9670656.153717108696.3525232400391672.89971810635836546940
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) +4*a(n-2) -8*a(n-3)
k=2: a(n) = 13*a(n-1) -11*a(n-2) -94*a(n-3) -7*a(n-4) +79*a(n-5) -3*a(n-6)
k=3: [order 30]
EXAMPLE
Some solutions for n=3 k=4
..7..3..7..4....7.11..6..3....7..4..5..4....7..3..7..8....7..3..7..3
..3..1..4..7....3..6.11..7....3..7..4..1....3..4..8..4....3..1..3..7
..1..4..7..8....1..3..7.11....7..4..1..0....4..8..9..8....6..3..4..8
CROSSREFS
Sequence in context: A261798 A022287 A288747 * A206238 A064761 A005945
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 19 2013
STATUS
approved