login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223346
3 X 3 X 3 triangular graph without horizontal edges coloring a rectangular array: number of n X 1 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
1
6, 12, 28, 60, 140, 300, 700, 1500, 3500, 7500, 17500, 37500, 87500, 187500, 437500, 937500, 2187500, 4687500, 10937500, 23437500, 54687500, 117187500, 273437500, 585937500, 1367187500, 2929687500, 6835937500, 14648437500, 34179687500
OFFSET
1,1
COMMENTS
Column 1 of A223352.
LINKS
FORMULA
From Pierre-Louis Giscard, May 17 2013: (Start)
a(n) = 2*5^((1/2)*(n-3))*(15 + 7*sqrt(5) + (-1)^n*(-15 + 7*sqrt(5))) for n > 0, a(0)=6.
G.f: 2*(x^2-6*x-3)/(5*x^2-1).
E.g.f.: (2/5)*(1 + 14*cosh(sqrt(5)*x) + 6*sqrt(5)*sinh(sqrt(5)*x)). (End)
EXAMPLE
Some solutions for n=3:
3 1 5 1 4 3 0 0 1 2 3 4 0 2 2 2
1 4 2 4 2 1 2 2 0 0 1 2 1 4 4 0
0 2 0 1 0 4 5 0 2 1 3 5 4 1 2 2
MATHEMATICA
Table[2*5^(1/2*(n - 3))*(15 + 7*Sqrt[5] + (-1)^n*(-15 + 7*Sqrt[5])), {n, 1, 20}] (* Pierre-Louis Giscard, May 17 2013 *)
CROSSREFS
Sequence in context: A325812 A323652 A375235 * A109510 A034715 A294730
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 19 2013
STATUS
approved