|
|
A223346
|
|
3 X 3 X 3 triangular graph without horizontal edges coloring a rectangular array: number of n X 1 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
|
|
1
|
|
|
6, 12, 28, 60, 140, 300, 700, 1500, 3500, 7500, 17500, 37500, 87500, 187500, 437500, 937500, 2187500, 4687500, 10937500, 23437500, 54687500, 117187500, 273437500, 585937500, 1367187500, 2929687500, 6835937500, 14648437500, 34179687500
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*5^((1/2)*(n-3))*(15 + 7*sqrt(5) + (-1)^n*(-15 + 7*sqrt(5))) for n > 0, a(0)=6.
G.f: 2*(x^2-6*x-3)/(5*x^2-1).
E.g.f.: (2/5)*(1 + 14*cosh(sqrt(5)*x) + 6*sqrt(5)*sinh(sqrt(5)*x)). (End)
|
|
EXAMPLE
|
Some solutions for n=3:
3 1 5 1 4 3 0 0 1 2 3 4 0 2 2 2
1 4 2 4 2 1 2 2 0 0 1 2 1 4 4 0
0 2 0 1 0 4 5 0 2 1 3 5 4 1 2 2
|
|
MATHEMATICA
|
Table[2*5^(1/2*(n - 3))*(15 + 7*Sqrt[5] + (-1)^n*(-15 + 7*Sqrt[5])), {n, 1, 20}] (* Pierre-Louis Giscard, May 17 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|