login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034715
Dirichlet convolution of triangular numbers with themselves.
4
1, 6, 12, 29, 30, 78, 56, 132, 126, 200, 132, 402, 182, 378, 420, 588, 306, 864, 380, 1050, 798, 902, 552, 1920, 875, 1248, 1296, 2002, 870, 2940, 992, 2592, 1914, 2108, 2100, 4635, 1406, 2622, 2652, 5080, 1722, 5628, 1892, 4818, 4860, 3818, 2256, 8856
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
From Vaclav Kotesovec, Feb 05 2019: (Start)
Dirichlet g.f.: ((zeta(s-1) + zeta(s-2))/2)^2.
Sum_{k=1..n} a(k) ~ n^3*(log(n)/12 + (6*gamma - 1 + Pi^2)/36), where gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
Table[n/4*Sum[(n+d)*(d+1)/d, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 05 2019 *)
PROG
(Magma) A000217:=func<i | i*(i+1)/2>; [&+[A000217(d)*A000217(n div d): d in Divisors(n)]: n in [1..50]]; // Bruno Berselli, Feb 11 2014
CROSSREFS
Cf. A000217.
Sequence in context: A375235 A223346 A109510 * A294730 A079390 A124679
KEYWORD
nonn
STATUS
approved