|
|
A034713
|
|
Dirichlet convolution of powers of 2 (2,4,8,...) with themselves.
|
|
0
|
|
|
4, 16, 32, 80, 128, 320, 512, 1152, 2112, 4352, 8192, 17152, 32768, 66560, 131584, 264448, 524288, 1053696, 2097152, 4203520, 8390656, 16793600, 33554432, 67147776, 134218752, 268500992, 536879104, 1073876992, 2147483648
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..29.
|
|
FORMULA
|
a(n) = 4 * A034733(n).
G.f.: Sum_{k>=1} 2^(k+1)*x^k/(1 - 2*x^k). - Ilya Gutkovskiy, Sep 10 2019
a(n) ~ 2^(n+2). - Vaclav Kotesovec, Sep 11 2019
|
|
MATHEMATICA
|
Table[Sum[2^(d + n/d), {d, Divisors[n]}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 11 2019 *)
|
|
PROG
|
(PARI) a(n) = if(n==0, 1, sumdiv(n, d, 2^d * 2^(n/d) )); \\ Joerg Arndt, Apr 14 2013
|
|
CROSSREFS
|
Cf. A000079, A034733.
Sequence in context: A326873 A126032 A296819 * A101653 A043100 A329853
Adjacent sequences: A034710 A034711 A034712 * A034714 A034715 A034716
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Erich Friedman
|
|
STATUS
|
approved
|
|
|
|