login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of triangular numbers with themselves.
4

%I #12 Sep 08 2022 08:44:52

%S 1,6,12,29,30,78,56,132,126,200,132,402,182,378,420,588,306,864,380,

%T 1050,798,902,552,1920,875,1248,1296,2002,870,2940,992,2592,1914,2108,

%U 2100,4635,1406,2622,2652,5080,1722,5628,1892,4818,4860,3818,2256,8856

%N Dirichlet convolution of triangular numbers with themselves.

%H Bruno Berselli, <a href="/A034715/b034715.txt">Table of n, a(n) for n = 1..1000</a>

%F G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^k/(1 - x^k)^3. - _Ilya Gutkovskiy_, Oct 24 2018

%F From _Vaclav Kotesovec_, Feb 05 2019: (Start)

%F Dirichlet g.f.: ((zeta(s-1) + zeta(s-2))/2)^2.

%F Sum_{k=1..n} a(k) ~ n^3*(log(n)/12 + (6*gamma - 1 + Pi^2)/36), where gamma is the Euler-Mascheroni constant A001620. (End)

%t Table[n/4*Sum[(n+d)*(d+1)/d, {d, Divisors[n]}], {n, 1, 50}] (* _Vaclav Kotesovec_, Feb 05 2019 *)

%o (Magma) A000217:=func<i | i*(i+1)/2>; [&+[A000217(d)*A000217(n div d): d in Divisors(n)]: n in [1..50]]; // Bruno Berselli, Feb 11 2014

%Y Cf. A000217.

%K nonn

%O 1,2

%A _Erich Friedman_